Unity in variety--the pan-genome of the Chlamydiae.

Chlamydiae are evolutionarily well-separated bacteria that live exclusively within eukaryotic host cells. They include important human pathogens such as Chlamydia trachomatis as well as symbionts of protozoa. As these bacteria are experimentally challenging and genetically intractable, our knowledge about them is still limited. In this study, we obtained the genome sequences of Simkania negevensis Z, Waddlia chondrophila 2032/99, and Parachlamydia acanthamoebae UV-7. This enabled us to perform the first comprehensive comparative and phylogenomic analysis of representative members of four major families of the Chlamydiae, including the Chlamydiaceae. We identified a surprisingly large core gene set present in all genomes and a high number of diverse accessory genes in those Chlamydiae that do not primarily infect humans or animals, including a chemosensory system in P. acanthamoebae and a type IV secretion system. In S. negevensis, the type IV secretion system is encoded on a large conjugative plasmid (pSn, 132 kb). Phylogenetic analyses suggested that a plasmid similar to the S. negevensis plasmid was originally acquired by the last common ancestor of all four families and that it was subsequently reduced, integrated into the chromosome, or lost during diversification, ultimately giving rise to the extant virulence-associated plasmid of pathogenic chlamydiae. Other virulence factors, including a type III secretion system, are conserved among the Chlamydiae to variable degrees and together with differences in the composition of the cell wall reflect adaptation to different host cells including convergent evolution among the four chlamydial families. Phylogenomic analysis focusing on chlamydial proteins with homology to plant proteins provided evidence for the acquisition of 53 chlamydial genes by a plant progenitor, lending further support for the hypothesis of an early interaction between a chlamydial ancestor and the primary photosynthetic eukaryote.

[1]  Harald Meier,et al.  46. ARB: A Software Environment for Sequence Data , 2011 .

[2]  D. Virok,et al.  Generation of targeted Chlamydia trachomatis null mutants , 2011, Proceedings of the National Academy of Sciences.

[3]  C. Meyer,et al.  Toll-Like Receptor 2 Activation by Chlamydia trachomatis Is Plasmid Dependent, and Plasmid-Responsive Chromosomal Loci Are Coordinately Regulated in Response to Glucose Limitation by C. trachomatis but Not by C. muridarum , 2011, Infection and Immunity.

[4]  M. Wagner,et al.  Proteomic analysis of the outer membrane of Protochlamydia amoebophila elementary bodies , 2010, Proteomics.

[5]  Thomas Rattei,et al.  Effective—a database of predicted secreted bacterial proteins , 2010, Nucleic Acids Res..

[6]  Olga K. Kamneva,et al.  Genome-Wide Influence of Indel Substitutions on Evolution of Bacteria of the PVC Superphylum, Revealed Using a Novel Computational Method , 2010, Genome biology and evolution.

[7]  G. Häcker,et al.  Cleavage of the NF-κB Family Protein p65/RelA by the Chlamydial Protease-like Activity Factor (CPAF) Impairs Proinflammatory Signaling in Cells Infected with Chlamydiae* , 2010, The Journal of Biological Chemistry.

[8]  Fernando de la Cruz,et al.  Mobility of Plasmids , 2010, Microbiology and Molecular Biology Reviews.

[9]  M. Wagner,et al.  Raman microspectroscopy reveals long‐term extracellular activity of chlamydiae , 2010, Molecular microbiology.

[10]  M. Wagner,et al.  Inclusion Membrane Proteins of Protochlamydia amoebophila UWE25 Reveal a Conserved Mechanism for Host Cell Interaction among the Chlamydiae , 2010, Journal of bacteriology.

[11]  A. Goesmann,et al.  The Waddlia Genome: A Window into Chlamydial Biology , 2010, PloS one.

[12]  G. Zhong,et al.  Identification of Chlamydia trachomatis Outer Membrane Complex Proteins by Differential Proteomics , 2010, Journal of bacteriology.

[13]  W. Huston Bacterial proteases from the intracellular vacuole niche; protease conservation and adaptation for pathogenic advantage. , 2010, FEMS immunology and medical microbiology.

[14]  Y. Abu Kwaik,et al.  Indispensable Role for the Eukaryotic-Like Ankyrin Domains of the Ankyrin B Effector of Legionella pneumophila within Macrophages and Amoebae , 2010, Infection and Immunity.

[15]  S. Miyagishima,et al.  Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. , 2010, Molecular biology and evolution.

[16]  Joseph J. Gillespie,et al.  Phylogenomics Reveals a Diverse Rickettsiales Type IV Secretion System , 2010, Infection and Immunity.

[17]  J. Mahony,et al.  Interactions between flagellar and type III secretion proteins in Chlamydia pneumoniae , 2010, BMC Microbiology.

[18]  M. Wagner,et al.  Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae , 2009, BMC Genomics.

[19]  D. Raoult,et al.  High Throughput Sequencing and Proteomics to Identify Immunogenic Proteins of a New Pathogen: The Dirty Genome Approach , 2009, PloS one.

[20]  M. Wagner,et al.  The Genome of the Amoeba Symbiont “Candidatus Amoebophilus asiaticus” Reveals Common Mechanisms for Host Cell Interaction among Amoeba-Associated Bacteria , 2009, Journal of bacteriology.

[21]  Stefan Götz,et al.  SIMAP—a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters , 2009, Nucleic Acids Res..

[22]  B. Coombes,et al.  A novel inhibitor of Chlamydophila pneumoniae protein kinase D (PknD) inhibits phosphorylation of CdsD and suppresses bacterial replication , 2009, BMC Microbiology.

[23]  J. Kirby,et al.  Chemotaxis-like regulatory systems: unique roles in diverse bacteria. , 2009, Annual review of microbiology.

[24]  Søren J. Sørensen,et al.  Conjugative plasmids: vessels of the communal gene pool , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  K. A. Fields,et al.  A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL‐17 signalling via interaction with human Act1 , 2009, Cellular microbiology.

[26]  D. Raoult,et al.  Massive comparative genomic analysis reveals convergent evolution of specialized bacteria , 2009, Biology Direct.

[27]  R. Heinzen,et al.  Host cell-free growth of the Q fever bacterium Coxiella burnetii , 2009, Proceedings of the National Academy of Sciences.

[28]  G. Myers,et al.  Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. , 2009, FEMS immunology and medical microbiology.

[29]  K. Gevaert,et al.  Analysis of proteins in Chlamydia trachomatis L2 outer membrane complex, COMC. , 2009, FEMS immunology and medical microbiology.

[30]  J. Werren,et al.  Evolution and diversity of Rickettsia bacteria , 2009, BMC Biology.

[31]  A. Maurelli,et al.  Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation , 2009, Proceedings of the National Academy of Sciences.

[32]  D. Rockey,et al.  Cytokinesis is blocked in mammalian cells transfected with Chlamydia trachomatis gene CT223 , 2009, BMC Microbiology.

[33]  Ingebrigt Sylte,et al.  The Thermolysin Family (M4) of Enzymes: Therapeutic and Biotechnological Potential , 2009, Chemical biology & drug design.

[34]  N. Moran,et al.  Genomics and evolution of heritable bacterial symbionts. , 2008, Annual review of genetics.

[35]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[36]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[37]  M. Horn Chlamydiae as symbionts in eukaryotes. , 2008, Annual review of microbiology.

[38]  Burkhard Becker,et al.  Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes , 2008, BMC Evolutionary Biology.

[39]  J. Graham,et al.  Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. , 2008, Environmental microbiology.

[40]  Ahmed Moustafa,et al.  Chlamydiae Has Contributed at Least 55 Genes to Plantae with Predominantly Plastid Functions , 2008, PloS one.

[41]  R. Heinzen,et al.  The Chlamydia trachomatis Plasmid Is a Transcriptional Regulator of Chromosomal Genes and a Virulence Factor , 2008, Infection and Immunity.

[42]  M. Nilges,et al.  SNARE Protein Mimicry by an Intracellular Bacterium , 2008, PLoS pathogens.

[43]  Gilbert GREUB,et al.  Emerging role of Chlamydia and Chlamydia-like organisms in adverse pregnancy outcomes , 2008, Current opinion in infectious diseases.

[44]  P. Højrup,et al.  Identification of human T cell targets recognized during Chlamydia trachomatis genital infection. , 2007, The Journal of infectious diseases.

[45]  T. Meyer,et al.  Tackling the intractable - approaching the genetics of Chlamydiales. , 2007, International journal of medical microbiology : IJMM.

[46]  A. Weber,et al.  Host origin of plastid solute transporters in the first photosynthetic eukaryotes , 2007, Genome Biology.

[47]  K. A. Rzomp,et al.  Chlamydia pneumoniae Inclusion Membrane Protein Cpn0585 Interacts with Multiple Rab GTPases , 2007, Infection and Immunity.

[48]  Sonya P Lad,et al.  Chlamydial CT441 Is a PDZ Domain-Containing Tail-Specific Protease That Interferes with the NF-κB Pathway of Immune Response , 2007, Journal of bacteriology.

[49]  Jonathan M. Harris,et al.  The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 °C , 2007 .

[50]  E. Sugawara,et al.  Structural and Functional Analyses of the Major Outer Membrane Protein of Chlamydia trachomatis , 2007, Journal of bacteriology.

[51]  Jinling Huang,et al.  Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? , 2007, Genome Biology.

[52]  David P. Wilson,et al.  Type III secretion à la Chlamydia. , 2007, Trends in microbiology.

[53]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[54]  Torsten Seemann,et al.  Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus , 2007, Nature Biotechnology.

[55]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[56]  A. Azad,et al.  Plasmids and Rickettsial Evolution: Insight from Rickettsia felis , 2007, PloS one.

[57]  A. Latorre,et al.  Genome reduction of the aphid endosymbiont Buchnera aphidicola in a recent evolutionary time scale. , 2007, Gene.

[58]  Igor B. Zhulin,et al.  Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors , 2007, Proceedings of the National Academy of Sciences.

[59]  T. Jewett,et al.  Chlamydial TARP is a bacterial nucleator of actin , 2006, Proceedings of the National Academy of Sciences.

[60]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[61]  T. Ahn,et al.  The dps Gene of Symbiotic “Candidatus Legionella jeonii” in Amoeba proteus Responds to Hydrogen Peroxide and Phagocytosis , 2006, Journal of bacteriology.

[62]  H. Ploegh,et al.  Chlamydia trachomatis‐derived deubiquitinating enzymes in mammalian cells during infection , 2006, Molecular microbiology.

[63]  M. Wagner,et al.  The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. , 2006, Current opinion in biotechnology.

[64]  Jean-Michel Claverie,et al.  Genome Sequence of Rickettsia bellii Illuminates the Role of Amoebae in Gene Exchanges between Intracellular Pathogens , 2006, PLoS genetics.

[65]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[66]  H. Caldwell,et al.  Comparative Genomic Analysis of Chlamydia trachomatis Oculotropic and Genitotropic Strains , 2005, Infection and Immunity.

[67]  S. Andersson,et al.  Genome reduction in the α-Proteobacteria , 2005 .

[68]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..

[69]  Gilbert Greub,et al.  A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system , 2004, BMC Microbiology.

[70]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[71]  M. Nilges,et al.  Conservation of the Biochemical Properties of IncA from Chlamydia trachomatis and Chlamydia caviae , 2004, Journal of Biological Chemistry.

[72]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[73]  Hendrik Szurmant,et al.  Diversity in Chemotaxis Mechanisms among the Bacteria and Archaea , 2004, Microbiology and Molecular Biology Reviews.

[74]  Dmitrij Frishman,et al.  Illuminating the Evolutionary History of Chlamydiae , 2004, Science.

[75]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[76]  F. Fang,et al.  The Ferritin-Like Dps Protein Is Required for Salmonella enterica Serovar Typhimurium Oxidative Stress Resistance and Virulence , 2004, Infection and Immunity.

[77]  D. Raoult,et al.  Parachlamydia acanthamoebae Enters and Multiplies within Human Macrophages and Induces Their Apoptosis , 2004, Infection and Immunity.

[78]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[79]  D. Raoult,et al.  Parachlamydia acanthamoeba Enters and Multiplies within Human Macrophages and Induces Their Apoptosis , 2003, Infection and Immunity.

[80]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[81]  S. Kahane,et al.  Infections with the chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. , 2003, Microbes and infection.

[82]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[83]  L. Frost,et al.  F factor conjugation is a true type IV secretion system. , 2003, FEMS microbiology letters.

[84]  T. Hackstadt,et al.  Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  S. Salzberg,et al.  Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. , 2003, Nucleic acids research.

[86]  M. Valassina,et al.  Increasing Diversity within Chlamydiae , 2003, Critical reviews in microbiology.

[87]  T. Tatusova,et al.  Genomic BLAST: custom-defined virtual databases for complete and unfinished genomes. , 2002, FEMS microbiology letters.

[88]  Artem Cherkasov,et al.  Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. , 2002, Genome research.

[89]  D. Raoult,et al.  Parachlamydiaceae: Potential Emerging Pathogens , 2002, Emerging infectious diseases.

[90]  M. Delorenzi,et al.  An HMM model for coiled-coil domains and a comparison with PSSM-based predictions , 2002, Bioinform..

[91]  H. Granzow,et al.  Neospora caninum and Waddlia chondrophila strain 2032/99 in a septic stillborn calf. , 2002, Veterinary microbiology.

[92]  M. Scidmore,et al.  Proteins in the chlamydial inclusion membrane. , 2002, Microbes and infection.

[93]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[94]  I. Henderson,et al.  Polymorphic proteins of Chlamydia spp.--autotransporters beyond the Proteobacteria. , 2001, Trends in microbiology.

[95]  S. Kahane,et al.  Infection of Acanthamoeba polyphagawith Simkania negevensis and S. negevensis Survival within Amoebal Cysts , 2001, Applied and Environmental Microbiology.

[96]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[97]  M. Borodovsky,et al.  GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. , 2001, Nucleic acids research.

[98]  B. M. Lange,et al.  Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[99]  D. Kell,et al.  The Kyoto Encyclopedia of Genes and Genomes—KEGG , 2000, Yeast.

[100]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[101]  Griffiths,et al.  A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane , 2000, Cellular microbiology.

[102]  L. Frost,et al.  Comparison of Proteins Involved in Pilus Synthesis and Mating Pair Stabilization from the Related Plasmids F and R100-1: Insights into the Mechanism of Conjugation , 1999, Journal of bacteriology.

[103]  T. Hackstadt,et al.  The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion , 1999, Cellular microbiology.

[104]  M Wagner,et al.  Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. , 1999, Environmental microbiology.

[105]  K. Everett,et al.  Simkania negevensis strain ZT: growth, antigenic and genome characteristics. , 1999, International journal of systematic bacteriology.

[106]  Ronald W. Davis,et al.  Comparative genomes of Chlamydia pneumoniae and C. trachomatis , 1999, Nature Genetics.

[107]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[108]  R. Scopes,et al.  Analysis of Proteins , 1998 .

[109]  N. Thomas,et al.  Plasmid diversity in Chlamydia. , 1997, Microbiology.

[110]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[111]  J. Elion,et al.  Description and partial characterization of a new Chlamydia-like microorganism. , 1993, FEMS microbiology letters.

[112]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[113]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[114]  Ellen Jo Baron,et al.  Manual of clinical microbiology , 1975 .

[115]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[116]  C. Dolea,et al.  World Health Organization , 1949, International Organization.

[117]  D. Vanrompay,et al.  Bacterial secretion systems with an emphasis on the chlamydial Type III secretion system. , 2010, Current issues in molecular biology.

[118]  Kazutaka Katoh,et al.  Multiple alignment of DNA sequences with MAFFT. , 2009, Methods in molecular biology.

[119]  Jonathan M. Harris,et al.  The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 degrees C. , 2007, FEBS letters.

[120]  Igor B Zhulin,et al.  Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. , 2007, Methods in enzymology.

[121]  E. Baron,et al.  Chlamydia and Chlamydophila. , 2006 .

[122]  M. Wagner,et al.  Recovery of an environmental Chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp. , 2005, Microbiology.

[123]  Andrei N Lupas,et al.  PhyloGenie: automated phylome generation and analysis. , 2004, Nucleic acids research.

[124]  Dmitrij Frishman,et al.  Functional and structural genomics using PEDANT , 2001, Bioinform..

[125]  P. Rastogi,et al.  MacVector. Integrated sequence analysis for the Macintosh. , 2000, Methods in molecular biology.

[126]  John J. Lee,et al.  Protocols in Protozoology , 1992 .

[127]  L. Wolpert Developmental Biology , 1968, Nature.