Effect of Atmospheric Corrections on NDVI: Intercomparability of Landsat 8, Sentinel-2, and UAV Sensors

Sentinel-2 and Landsat 8 satellites constitute an unprecedented source of freely accessible satellite imagery. To produce precise outputs from the satellite data, however, proper use of atmospheric correction methods is crucial. In this work, we tested the performance of six different atmospheric correction methods (QUAC, FLAASH, DOS, ACOLITE, 6S, and Sen2Cor), together with atmospheric correction given by providers, non-corrected image, and images acquired using an unmanned aerial vehicle while working with the normalised difference vegetation index (NDVI) as the most widely used index. We tested their performance across urban, rural, and vegetated land cover types. Our results show a substantial impact from the choice of the atmospheric correction method on the resulting NDVI. Moreover, we demonstrate that proper use of atmospheric correction methods can increase the intercomparability between data from Landsat 8 and Sentinel-2 satellite imagery.

[1]  Stefan Adriaensen,et al.  Atmospheric Correction Inter-comparison eXercise , 2018, Remote. Sens..

[2]  Giuseppe Modica,et al.  A Comparison of UAV and Satellites Multispectral Imagery in Monitoring Onion Crop. An Application in the 'Cipolla Rossa di Tropea' (Italy) , 2020, Remote. Sens..

[3]  Lin Liu,et al.  Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong , 2011, Remote. Sens..

[4]  Jan Komárek,et al.  The potential of Unmanned Aerial Systems: A tool towards precision classification of hard-to-distinguish vegetation types? , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[5]  Luís Pádua,et al.  UAS, sensors, and data processing in agroforestry: a review towards practical applications , 2017 .

[6]  Jaeil Cho,et al.  Inter-Comparison of Normalized Difference Vegetation Index Measured from Different Footprint Sizes in Cropland , 2020, Remote. Sens..

[7]  N. Pettorelli,et al.  The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology , 2011 .

[8]  Carlos C. DaCamara,et al.  Drought and vegetation stress monitoring in Portugal using satellite data , 2009 .

[9]  Xavier Pons,et al.  Radiometric Correction of Landsat-8 and Sentinel-2A Scenes Using Drone Imagery in Synergy with Field Spectroradiometry , 2018, Remote. Sens..

[10]  N. Coops,et al.  Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras , 2014 .

[11]  Ebrahim Ghaderpour,et al.  Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software , 2020, International Journal of Remote Sensing.

[12]  David P. Miller,et al.  Status of atmospheric correction using a MODTRAN4-based algorithm , 2000, SPIE Defense + Commercial Sensing.

[13]  Andrew K. Skidmore,et al.  Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[14]  G. Meera Gandhi,et al.  Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District☆ , 2015 .

[15]  D. Hadjimitsis,et al.  Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices , 2010 .

[16]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[17]  Gérard Dedieu,et al.  A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images , 2015, Remote. Sens..

[18]  J. Irons,et al.  Landsat 8: The plans, the reality, and the legacy , 2016 .

[19]  Emmanouil Psomiadis,et al.  Precision Agriculture - Comparison and Evaluation of Innovative Very High Resolution (UAV) and LandSat Data , 2015, HAICTA.

[20]  R. Lunetta,et al.  Land-cover change detection using multi-temporal MODIS NDVI data , 2006 .

[21]  Diofantos G. Hadjimitsis,et al.  The Importance of Accounting for Atmospheric Effects in the Application of NDVI and Interpretation of Satellite Imagery Supporting Archaeological Research: The Case Studies of Palaepaphos and Nea Paphos Sites in Cyprus , 2011, Remote. Sens..

[22]  Francisco Alonso-Sarría,et al.  Effect of Different Atmospheric Correction Algorithms on Sentinel-2 Imagery Classification Accuracy in a Semiarid Mediterranean Area , 2021, Remote. Sens..

[23]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[24]  P. M. Teillet,et al.  Image correction for radiometric effects in remote sensing , 1986 .

[25]  Feng Gao,et al.  Daily Mapping of 30 m LAI and NDVI for Grape Yield Prediction in California Vineyards , 2017, Remote. Sens..

[26]  Gail P. Anderson,et al.  Analysis of Hyperion data with the FLAASH atmospheric correction algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[27]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[28]  J. Nichol,et al.  Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment , 2014 .

[29]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[30]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[31]  Matthew F. McCabe,et al.  High-Resolution NDVI from Planet's Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture , 2016, Remote. Sens..

[32]  Y. Ryu,et al.  Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations , 2015 .

[33]  Quazi K. Hassan,et al.  Remote sensing of agricultural drought monitoring: A state of art review , 2016 .