Computational Modeling of Crystals and Liquids in the System Na2O‐CaO‐MgO‐Al2O3‐SiO2

A transferable interatomic potential model has been developed for use in computer simulation of crystals and liquids in the system Na 2 O-CaO-MgO-Al 2 O 3 -SiO 2 (NCMAS). The potential energy of the system is taken as the sum of pairwise additive Coulomb, van der Waals, and repulsive interactions. The net charges on the Na, Ca, Mg, Al, Si, and O ions are constrained to be 2q(Na) = q(Ca) = q(Mg) = 2/3 q(Al) = 1/2 q(Si) = -q(O) in order to preserve the requirement of transferability between phases with different composition in the NCMAS system. To assess the potential model, the molecular dynamics (MD) method with the potential is applied to a wide structural variety of 29 crystals in the NCMAS system and the five silicate liquids with the compositions enstatite (MgSiO 3 ), wollastonite (CaSiO 3 ), diopside (CaMgSi 2 O 6 ), anorthite (CaAl 2 Si 2 O 8 ), and albite (NaAlSi 3 O 8 ). The MD simulated structures and bulk moduli of the 29 crystals and the MD values of the temperature-pressure-volume equation-of-state parameters for the five silicate liquids are found to compare well with the available experimental data. The MD technique is then used to simulate the pressure dependence of the molar volume of both MgSiO 3 perovskite and liquid at pressures up to 150 GPa and at the temperatures of 2500 and 3500 K, with the results that no volume reversal is found between MgSiO 3 perovskite and liquid at these temperature and pressure conditions. This indicates the perovskite melting curve has no maximum over the pressure range in the lower mantle.

[1]  Masanori Matsui,et al.  Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2 , 1996 .

[2]  M. Matsui Molecular dynamics simulation of structures, bulk moduli, and volume thermal expansivities of silicate liquids in the system CaO‐MgO‐Al2O3‐SiO2 , 1996 .

[3]  G. D. Price,et al.  Ab initio study of MgSiO3 C2/c enstatite , 1995 .

[4]  F. Spera,et al.  Molecular dynamics simulations of liquids and glasses in the system NaAlSiO4-SiO2; methodology and melt structures , 1995 .

[5]  G. D. Price,et al.  Comparison between the lattice dynamics and molecular dynamics methods: Calculation results for MgSiO3 perovskite , 1994 .

[6]  A. Belonoshko Molecular dynamics of silica at high pressures: Equation of state, structure, and phase transitions , 1994 .

[7]  A. Zerr,et al.  Melting of (Mg, Fe)SiO3-Perovskite to 625 Kilobars: Indication of a High Melting Temperature in the Lower Mantle , 1993, Science.

[8]  J. S. Sweeney,et al.  Melting of iron‐magnesium‐silicate perovskite , 1993 .

[9]  D. Yuen,et al.  Molecular dynamics study of the transport properties of perovskite melts under high temperature and pressure conditions , 1993 .

[10]  R. Angel,et al.  Stability of high-density clinoenstatite at upper-mantle pressures , 1992, Nature.

[11]  M. Dove,et al.  Thermodynamic properties of MgSiO3 perovskite derived from large scale molecular dynamics simulations , 1992 .

[12]  G. D. Price,et al.  Simulation of the pre-melting behaviour of MgSiO3 perovskite at high pressures and temperatures , 1991, Nature.

[13]  A. Lasaga,et al.  Molecular dynamics simulations of pressure and temperature effects on MgSiO3 and Mg2SiO4 melts and glasses , 1991 .

[14]  L. Stixrude,et al.  Fundamental thermodynamic relations and silicate melting with implications for the constitution of D , 1990 .

[15]  D. C. Presnall,et al.  Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4)‐majorite (MgSiO3) eutectic at 16.5 GPa: Implications for the origin of the mantle , 1990 .

[16]  G. D. Price,et al.  Electrical conductivity of the lower mantle: a molecular dynamics simulation of MgSiO3 perovskite , 1989 .

[17]  T. Ahrens,et al.  High‐pressure equation of state of molten anorthite and diopside , 1989 .

[18]  M. Matsui Molecular dynamics study of the structural and thermodynamic properties of MgO crystal with quantum correction , 1989 .

[19]  R. Jeanloz,et al.  Melting curve of (Mg,Fe)SiO3 perovskite to 96 GPa: Evidence for a structural transition in lower mantle melts , 1989 .

[20]  J. Poirier Lindemann law and the melting temperature of perovskites , 1989 .

[21]  M. Guillopé,et al.  High ionic diffusivity in the perovskite MgSiO3: A molecular-dynamics study , 1988 .

[22]  Aoki,et al.  First-principles interatomic potential of silica applied to molecular dynamics. , 1988, Physical review letters.

[23]  D. Weidner,et al.  The single-crystal elastic properties of jadeite , 1988 .

[24]  R. Hazen,et al.  Comparative compressibility of end-member feldspars , 1988 .

[25]  R. Lange,et al.  Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties , 1987 .

[26]  R. Jeanloz,et al.  Measurement of the melting curve of Mg0.9Fe0.1SiO3 at lower mantle conditions and its geophysical implications , 1987 .

[27]  M. Rivers,et al.  Ultrasonic studies of silicate melts , 1987 .

[28]  J. H. Rose,et al.  Compressibility of solids , 1987 .

[29]  M. Kumazawa,et al.  Garnet phase of MgSiO3 filling the pyroxene–ilmenite gap at very high temperature , 1985, Nature.

[30]  E. Ohtani Melting temperature distribution and fractionation in the lower mantle , 1983 .

[31]  C. Angell,et al.  Pressure Enhancement of Ion Mobilities in Liquid Silicates from Computer Simulation Studies to 800 Kilobars , 1982, Science.

[32]  G. Brown,et al.  Low albite; an X-ray and neutron diffraction study , 1980 .

[33]  K. Kawamura,et al.  Instantaneous structure of an MgSiO3 melt simulated by molecular dynamics , 1980, Nature.

[34]  C. Angell,et al.  Molecular dynamics studies of the vitreous state: Simple ionic systems and silica , 1976 .

[35]  J. Papike,et al.  High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite , 1973 .