Risk- and ambiguity-averse portfolio optimization with quasiconcave utility functionals

Motivated by recent axiomatic developments, we study the risk- and ambiguity-averse investment problem where trading takes place in continuous time over a fixed finite horizon and terminal payoffs are evaluated according to criteria defined in terms of quasiconcave utility functionals. We extend to the present setting certain existence and duality results established for so-called variational preferences by Schied (Finance Stoch. 11:107–129, 2007). The results are proved by building on existing results for the classical utility maximization problem, combined with a careful analysis of the involved quasiconvex and semicontinuous functions.

[1]  Martin Schweizer Dynamic utility indierence valuation via convex risk measures , 2005 .

[2]  J. Neumann,et al.  Theory of Games and Economic Behavior. , 1945 .

[3]  G. Debreu,et al.  Theory of Value , 1959 .

[4]  Hans Föllmer,et al.  Efficient hedging: Cost versus shortfall risk , 2000, Finance Stochastics.

[5]  Roger J. A. Laeven,et al.  Robust Portfolio Choice and Indifference Valuation , 2014, Math. Oper. Res..

[6]  Tomasz Strzalecki,et al.  Axiomatic Foundations of Multiplier Preferences , 2009 .

[7]  M. Schweizer,et al.  A Stochastic Control Approach to a Robust Utility Maximization Problem , 2007 .

[8]  Anis Matoussi,et al.  Maximization of Recursive Utilities: A Dynamic Maximum Principle Approach , 2011, SIAM J. Financial Math..

[9]  J. Schreiber Foundations Of Statistics , 2016 .

[10]  X. Zhou,et al.  MEAN–VARIANCE PORTFOLIO OPTIMIZATION WITH STATE‐DEPENDENT RISK AVERSION , 2014 .

[11]  C. L. Sheng A Theory of Value , 1991 .

[12]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[13]  Alexander Schied,et al.  Optimal investments for risk- and ambiguity-averse preferences: a duality approach , 2006, Finance Stochastics.

[14]  D. Hernández-Hernández,et al.  Robust utility maximization in a stochastic factor model , 2006 .

[15]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[16]  Marcel Nutz,et al.  UTILITY MAXIMIZATION UNDER MODEL UNCERTAINTY IN DISCRETE TIME , 2013, 1307.3597.

[17]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[18]  Marie Claire Quenez,et al.  A Generalized Stochastic Differential Utility , 2003, Math. Oper. Res..

[19]  Burgert Christian,et al.  Optimal consumption strategies under model uncertainty , 2005 .

[20]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[21]  Sara Biagini,et al.  Dynamic Quasi Concave Performance Measures , 2012 .

[22]  Oleksii Mostovyi,et al.  Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption , 2011, Finance Stochastics.

[23]  Kim Weston Stability of utility maximization in nonequivalent markets , 2016, Finance Stochastics.

[24]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[25]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[26]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[27]  Lars Peter Hansen,et al.  A QUARTET OF SEMIGROUPS FOR MODEL SPECIFICATION, ROBUSTNESS, PRICES OF RISK, AND MODEL DETECTION , 2003 .

[28]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[29]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[30]  Massimo Marinacci,et al.  AMBIGUITY AVERSION, ROBUSTNESS, AND THE VARIATIONAL , 2006 .

[31]  Michael Kupper,et al.  Risk Preferences and their Robust Representation , 2010, Math. Oper. Res..

[32]  Marco Frittelli,et al.  Complete duality for quasiconvex dynamic risk measures on modules of the L p -type , 2012, 1201.1788.

[33]  Gordan Zitkovic,et al.  Stability of utility-maximization in incomplete markets , 2007, 0706.0474.

[34]  Marco Frittelli,et al.  Dual Representation of Quasi-convex Conditional Maps , 2011, SIAM J. Financial Math..

[35]  Costis Skiadas Robust control and recursive utility , 2003, Finance Stochastics.

[36]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[37]  J. Aubin,et al.  APPLIED FUNCTIONAL ANALYSIS , 1981, The Mathematical Gazette.

[38]  Anis Matoussi,et al.  Robust utility maximization in a discontinuous filtration , 2012 .

[39]  Sigrid Källblad Topics in Portfolio Choice: Qualitative Properties, Time Consistency and Investment Under Model Uncertainty , 2013 .

[40]  Emanuela Rosazza Gianin,et al.  Portfolio Optimization with Quasiconvex Risk Measures , 2013, Math. Oper. Res..

[41]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[42]  Alain Chateauneuf,et al.  Ambiguity through confidence functions , 2009 .

[43]  M. Sion On general minimax theorems , 1958 .

[44]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[45]  W. Kim,et al.  ON A NON-COMPACT GENERALIZATION OF FAN\'S MINIMAX THEOREM , 2010 .

[46]  B. Acciaio,et al.  Optimal portfolio selection via conditional convex risk measures on Lp , 2013 .

[47]  H. Föllmer,et al.  Convex risk measures and the dynamics of their penalty functions , 2006 .

[48]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[49]  Julio D. Backhoff Veraguas,et al.  Robust Utility Maximization without Model Compactness , 2016, SIAM J. Financial Math..

[50]  Martin Larsson Non-Equivalent Beliefs and Subjective Equilibrium Bubbles , 2013, 1306.5082.

[51]  J. Bion-Nadal Time consistent dynamic risk processes , 2009 .

[52]  Elisa Mastrogiacomo,et al.  Pareto optimal allocations and optimal risk sharing for quasiconvex risk measures , 2015 .

[53]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[54]  D. Hernandez-Hernandez,et al.  Robust maximization of consumption with logarithmic utility , 2007, 2007 American Control Conference.

[55]  W. Schachermayer,et al.  Necessary and sufficient conditions in the problem of optimal investment in incomplete markets , 2003 .

[56]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[57]  Wiebke Wittmüss Robust optimization of consumption with random endowment , 2008 .

[58]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[59]  S. Peng,et al.  Dynamically Consistent Nonlinear Evaluations and Expectations , 2005, math/0501415.

[60]  Thaleia Zariphopoulou,et al.  Time-Consistent Investment Under Model Uncertainty: The Robust Forward Criteria , 2013, 1311.3529.

[61]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[62]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[63]  F. Delbaen,et al.  The fundamental theorem of asset pricing for unbounded stochastic processes , 1998 .

[64]  Massimo Marinacci,et al.  Complete Monotone Quasiconcave Duality , 2011, Math. Oper. Res..

[65]  Massimo Marinacci,et al.  Uncertainty averse preferences , 2011, J. Econ. Theory.

[66]  L. Montrucchio,et al.  RISK MEASURES: RATIONALITY AND DIVERSIFICATION , 2010 .

[67]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[68]  Keita Owari Robust exponential hedging in a Brownian setting , 2009, JSIAM Lett..

[69]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[70]  Susanne Klöppel,et al.  DYNAMIC INDIFFERENCE VALUATION VIA CONVEX RISK MEASURES , 2007 .

[71]  D. Hernández-Hernández,et al.  A control approach to robust utility maximization with logarithmic utility and time-consistent penalties , 2007 .

[72]  M. Müller,et al.  Market completion and robust utility maximization , 2005 .

[73]  ching-tang wu,et al.  Duality theory for optimal investments under model uncertainty , 2005 .

[74]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[75]  M. Quenez Optimal Portfolio in a Multiple-Priors Model , 2004 .

[76]  张宇 Ambiguity , 2017, Encyclopedia of GIS.

[77]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[78]  Freddy Delbaen,et al.  Representation of the penalty term of dynamic concave utilities , 2008, Finance Stochastics.

[79]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[80]  Massimo Marinacci,et al.  Rational preferences under ambiguity , 2011 .

[81]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[82]  Laurent Denis,et al.  Optimal Investment under Model Uncertainty in Nondominated Models , 2013, SIAM J. Control. Optim..

[83]  H. Föllmer,et al.  Robust Preferences and Robust Portfolio Choice , 2009 .

[84]  Christoph Czichowsky,et al.  Time-consistent mean-variance portfolio selection in discrete and continuous time , 2012, Finance and Stochastics.

[85]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[86]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .