Intentional Risk and Cyber-Security: A Motivating Introduction

Protecting digital assets has become increasingly difficult. For cyber-attackers, a successful infiltration will grant them valuable stolen assets or confer them beneficial strategic advantages. The main driver to assess the risk of a cyber-attack is the expected profit or benefit that the attacker will gain out of it. Two theoretical elements configure the pillars for a suitable high-level mathematical cyber-security model. On one hand, Game Theory, based on the stability analysis of the John Nash equilibrium Intentionality management and, on the other hand, Complex Network Theory (structure and dynamics) that provides a physical and logical structure where the game is played. The aim of this book is to present this cyber-risk management methodology and tools together with the scientific, mathematical and theoretical basis to support it. We present this management methodology by introducing the concept of intentionality as the backbone of cyber-risk management. This will allow information security professionals to better decision-making through real-time scenario analysis.

[1]  V. Latora,et al.  Centrality in networks of urban streets. , 2006, Chaos.

[2]  Miguel Romance,et al.  Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis , 2015, Networks Heterog. Media.

[3]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[4]  M. Serrano,et al.  Generalized percolation in random directed networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  J. Gómez-Gardeñes,et al.  Maximal-entropy random walks in complex networks with limited information. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  T. S. Evans,et al.  Complex networks , 2004 .

[7]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[8]  V. Latora,et al.  Efficiency of scale-free networks: error and attack tolerance , 2002, cond-mat/0205601.

[9]  Katja Berdica,et al.  AN INTRODUCTION TO ROAD VULNERABILITY: WHAT HAS BEEN DONE, IS DONE AND SHOULD BE DONE , 2002 .

[10]  V. Latora,et al.  Multiscale vulnerability of complex networks. , 2007, Chaos.

[11]  Adilson E Motter Cascade control and defense in complex networks. , 2004, Physical review letters.

[12]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[13]  Silvia Gago,et al.  Spectral Techniques in Complex Networks , 2011 .

[14]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[15]  Ake J Holmgren,et al.  Using Graph Models to Analyze the Vulnerability of Electric Power Networks , 2006, Risk analysis : an official publication of the Society for Risk Analysis.

[16]  Joseph Rudnick,et al.  Elements of the random walk , 2004 .

[17]  Massimo Marchiori,et al.  Vulnerability and protection of infrastructure networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[19]  Adilson E Motter,et al.  Cascade-based attacks on complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[21]  Vittorio Rosato,et al.  Growth mechanisms of the AS-level Internet network , 2004 .

[22]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[23]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[24]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[25]  Piet Van Mieghem,et al.  Performance analysis of communications networks and systems , 2006 .

[26]  Panos M. Pardalos,et al.  Selected Topics in Critical Element Detection , 2012 .

[27]  Carlos H. C. Ribeiro,et al.  A framework for vulnerability management in complex networks , 2009, 2009 International Conference on Ultra Modern Telecommunications & Workshops.

[28]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[29]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[30]  V. Latora,et al.  A measure of centrality based on network efficiency , 2004, cond-mat/0402050.

[31]  Massimo Marchiori,et al.  Economic small-world behavior in weighted networks , 2003 .

[32]  Phillip Bonacich,et al.  Eigenvector-like measures of centrality for asymmetric relations , 2001, Soc. Networks.

[33]  László Csató,et al.  Distance-based accessibility indices , 2015, ArXiv.

[34]  Panos M. Pardalos,et al.  Detecting critical nodes in sparse graphs , 2009, Comput. Oper. Res..

[35]  J. Anez,et al.  Dual graph representation of transport networks , 1996 .

[36]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[37]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Réka Albert,et al.  Structural vulnerability of the North American power grid. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[40]  Rui Jiang,et al.  Urban traffic simulated from the dual representation: Flow, crisis and congestion , 2009 .

[41]  K. Goh,et al.  Spectra and eigenvectors of scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  D. Volchenkov,et al.  Transport Networks Revisited: Why Dual Graphs? , 2007, 0710.5494.

[44]  B. Bollobás The evolution of random graphs , 1984 .

[45]  Renaud Lambiotte,et al.  Line graphs of weighted networks for overlapping communities , 2010 .

[46]  V. Gol'dshtein,et al.  Vulnerability and Hierarchy of Complex Networks , 2004, cond-mat/0409298.

[47]  A. Arenas,et al.  Community analysis in social networks , 2004 .

[48]  David I Blockley,et al.  Vulnerability of structural systems , 2003 .

[49]  Miguel Romance,et al.  Structural properties of the line-graphs associated to directed networks , 2012, Networks Heterog. Media.

[50]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[51]  Azer Bestavros,et al.  A Framework for the Evaluation and Management of Network Centrality , 2011, SDM.

[52]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[53]  Panos M. Pardalos,et al.  An integer programming approach for finding the most and the least central cliques , 2015, Optim. Lett..

[54]  Miguel Romance,et al.  Analytical relationships between metric and centrality measures of a network and its dual , 2011, J. Comput. Appl. Math..

[55]  Bojan Mohar,et al.  Laplace eigenvalues of graphs - a survey , 1992, Discret. Math..

[56]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[57]  Eduardo L. Pasiliao,et al.  Critical nodes for distance‐based connectivity and related problems in graphs , 2015, Networks.

[58]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[59]  A. Gibbons Algorithmic Graph Theory , 1985 .

[60]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[61]  Miguel Romance,et al.  Effective measurement of network vulnerability under random and intentional attacks , 2005, J. Math. Model. Algorithms.

[62]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[63]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[64]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[65]  Stefano Boccaletti,et al.  Vulnerability and Fall of Efficiency in Complex Networks: a New Approach with Computational Advantages , 2009, Int. J. Bifurc. Chaos.

[66]  Piet Van Mieghem,et al.  On the Robustness of Complex Networks by Using the Algebraic Connectivity , 2008, Networking.

[67]  V. Latora,et al.  Centrality measures in spatial networks of urban streets. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[69]  Miguel Romance,et al.  Structural Vulnerability and Robustness in Complex Networks: Different Approaches and Relationships Between them , 2012 .

[70]  Vladimir Batagelj,et al.  Spectral centrality measures in temporal networks , 2015, Ars Math. Contemp..

[71]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[72]  A. Jamakovic,et al.  On the relationship between the algebraic connectivity and graph's robustness to node and link failures , 2007, 2007 Next Generation Internet Networks.

[73]  Nelly Litvak,et al.  PageRank in Scale-Free Random Graphs , 2014, WAW.

[74]  Anthony H. Dekker,et al.  Network Robustness and Graph Topology , 2004, ACSC.

[75]  Hongzhong Deng,et al.  Vulnerability of complex networks under intentional attack with incomplete information , 2007 .

[76]  S. Strogatz Exploring complex networks , 2001, Nature.

[77]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[79]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[80]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[81]  Ljupco Kocarev,et al.  Vulnerability of labeled networks , 2010 .

[82]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[83]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[85]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[86]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[87]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[88]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Shichao Yang Exploring complex networks by walking on them. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Beom Jun Kim,et al.  Attack vulnerability of complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Eduardo L. Pasiliao,et al.  An integer programming framework for critical elements detection in graphs , 2014, J. Comb. Optim..

[92]  Ana Paula Couto da Silva,et al.  On the joint dynamics of network diameter and spectral gap under node removal , 2010 .

[93]  Regino Criado,et al.  Choosing a leader on a complex network , 2007 .

[94]  Jesús Gómez-Gardeñes,et al.  A mathematical model for networks with structures in the mesoscale , 2010, Int. J. Comput. Math..

[95]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[96]  Miguel Romance,et al.  A Node-Based Multiscale Vulnerability of Complex Networks , 2009, Int. J. Bifurc. Chaos.

[97]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Zhejing Bao,et al.  Comparison of cascading failures in small-world and scale-free networks subject to vertex and edge attacks , 2009 .

[99]  V. Latora,et al.  The Network Analysis of Urban Streets: A Primal Approach , 2006 .

[100]  Frank Harary,et al.  Graph Theory , 2016 .

[101]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[102]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[103]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[104]  S. Borgatti,et al.  The centrality of groups and classes , 1999 .

[105]  Miguel Romance,et al.  New results on computable efficiency and its stability for complex networks , 2006 .

[106]  Robin J. Wilson Introduction to Graph Theory , 1974 .

[107]  R. Criado,et al.  A Perron-Frobenius theory for block matrices associated to a multiplex network , 2014, 1411.7757.

[108]  D. Cvetkovic,et al.  Recent Results in the Theory of Graph Spectra , 2012 .

[109]  David I Blockley,et al.  VULNERABILITY OF SYSTEMS , 2001 .

[110]  F. Pedroche,et al.  MÉTODOS DE CÁLCULO DEL VECTOR PAGERANK , 2008 .

[111]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[112]  Massimo Marchiori,et al.  How the science of complex networks can help developing strategies against terrorism , 2004 .

[113]  Julio M. Ottino,et al.  Complex networks , 2004, Encyclopedia of Big Data.