Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials.

Single neurons in the primary auditory cortex of the cat show faster adaptation time constants to short- than long-term stimulus history. This ability to encode the complex past auditory stimulation in multiple time scales would enable the auditory system to generate expectations of the incoming stimuli. Here, we tested whether large neural populations exhibit this ability as well, by recording human auditory evoked potentials (AEP) to pure tones in a sequence embedding short- and long-term aspects of stimulus history. Our results yielded dynamic amplitude modulations of the P2 AEP to stimulus repetition spanning from milliseconds to tens of seconds concurrently, as well as amplitude modulations of the mismatch negativity AEP to regularity violations. A simple linear model of expectancy accounting for both short- and long-term stimulus history described our results, paralleling the behavior of neurons in the primary auditory cortex.

[1]  R. Butler,et al.  Stimulus repetition rate factors which influence the auditory evoked potential in man. , 1969, Psychophysiology.

[2]  N. Squires,et al.  The effect of stimulus sequence on the waveform of the cortical event-related potential. , 1976, Science.

[3]  R. Näätänen,et al.  Early selective-attention effect on evoked potential reinterpreted. , 1978, Acta psychologica.

[4]  T. Picton,et al.  Human auditory sustained potentials. II. Stimulus relationships. , 1978, Electroencephalography and clinical neurophysiology.

[5]  P. Cooke Presidential address 1980. , 1980, The Hospital and health services review.

[6]  E. Donchin Presidential address, 1980. Surprise!...Surprise? , 1981, Psychophysiology.

[7]  R. Näätänen,et al.  Sequential effects on the ERP in discriminating two stimuli , 1983, Biological Psychology.

[8]  R. Näätänen,et al.  Short-term habituation and dishabituation of the mismatch negativity of the ERP. , 1984, Psychophysiology.

[9]  N. Cowan On short and long auditory stores. , 1984, Psychological bulletin.

[10]  E. N. Sokolov,et al.  Frequency and location specificity of the human vertex N1 wave. , 1988, Electroencephalography and clinical neurophysiology.

[11]  Albert S. Bregman,et al.  The Auditory Scene. (Book Reviews: Auditory Scene Analysis. The Perceptual Organization of Sound.) , 1990 .

[12]  G. Fein,et al.  P50 suppression is not affected by attentional manipulations , 1992, Biological Psychiatry.

[13]  L. Kaufman,et al.  Human auditory primary and association cortex have differing lifetimes for activation traces , 1992, Brain Research.

[14]  R. Näätänen Attention and brain function , 1992 .

[15]  P. Ullsperger,et al.  Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval. , 1992, Psychophysiology.

[16]  G. A. Miller,et al.  Memory template comparison processes in anhedonia and dysthymia. , 1993, Psychophysiology.

[17]  I. Winkler,et al.  Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). , 1993, Journal of experimental psychology. Learning, memory, and cognition.

[18]  L. McEvoy,et al.  Determinants of the auditory mismatch response. , 1993, Electroencephalography and clinical neurophysiology.

[19]  P. Tueting,et al.  The P50 evoked potential component and mismatch detection in normal volunteers: implications for the study of sensory gating , 1995, Psychiatry Research.

[20]  E. Schröger,et al.  Mismatch response of the human brain to changes in sound location , 1996, Neuroreport.

[21]  D. Javitt,et al.  Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. , 1998, Electroencephalography and clinical neurophysiology.

[22]  I. Winkler,et al.  The concept of auditory stimulus representation in cognitive neuroscience. , 1999, Psychological bulletin.

[23]  T. Baldeweg,et al.  Differential changes in frontal and sub-temporal components of mismatch negativity. , 1999, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[24]  D. Javitt Intracortical Mechanisms of Mismatch Negativity Dysfunction in Schizophrenia , 2000, Audiology and Neurotology.

[25]  I. Winkler,et al.  Involuntary Attention and Distractibility as Evaluated with Event-Related Brain Potentials , 2000, Audiology and Neurotology.

[26]  I. Winkler,et al.  ‘Primitive intelligence’ in the auditory cortex , 2001, Trends in Neurosciences.

[27]  E. Schröger,et al.  Is there pre-attentive memory-based comparison of pitch? , 2001, Psychophysiology.

[28]  S. K. Barber,et al.  Knowledge of Stimulus Repetition Affects the Magnitude and Spatial Distribution of Low-Frequency Event-Related Brain Potentials , 2002, Audiology and Neurotology.

[29]  John J. Foxe,et al.  Memory reactivation or reinstatement and the mismatch negativity. , 2002, Psychophysiology.

[30]  J. L. Cantero,et al.  The time course of neural changes underlying auditory perceptual learning. , 2002, Learning & memory.

[31]  Alon Fishbach,et al.  Primary auditory cortex of cats: feature detection or something else? , 2003, Biological Cybernetics.

[32]  E. Schröger,et al.  Preattentive Memory-Based Comparison of Sound Intensity , 2003, Audiology and Neurotology.

[33]  I. Winkler,et al.  Mismatch negativity to pitch change: varied stimulus proportions in controlling effects of neural refractoriness on human auditory event-related brain potentials , 2003, Neuroscience Letters.

[34]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[35]  E. Schröger,et al.  Measuring duration mismatch negativity , 2003, Clinical Neurophysiology.

[36]  A. Dale,et al.  Human posterior auditory cortex gates novel sounds to consciousness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Risto Näätänen,et al.  Frequency Change Detection in Human Auditory Cortex , 1999, Journal of Computational Neuroscience.

[38]  T. Baldeweg,et al.  Mismatch negativity potentials and cognitive impairment in schizophrenia , 2004, Schizophrenia Research.

[39]  I. Nelken,et al.  Multiple Time Scales of Adaptation in Auditory Cortex Neurons , 2004, The Journal of Neuroscience.

[40]  C. Elger,et al.  Short-term habituation of the intracranially recorded auditory evoked potentials P50 and N100 , 2004, Neuroscience Letters.

[41]  Claude Alain,et al.  I've heard it all before: perceptual invariance represented by early cortical auditory-evoked responses. , 2005, Brain research. Cognitive brain research.

[42]  D. Vernon,et al.  Event-Related Brain Potential Correlates of Human Auditory Sensory Memory-Trace Formation , 2005, The Journal of Neuroscience.

[43]  M. Malmierca,et al.  Novelty detector neurons in the mammalian auditory midbrain , 2005, The European journal of neuroscience.

[44]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  K. Stephan,et al.  Nicotinic modulation of human auditory sensory memory: Evidence from mismatch negativity potentials. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[46]  T. Baldeweg Repetition effects to sounds: evidence for predictive coding in the auditory system , 2006, Trends in Cognitive Sciences.

[47]  R. Näätänen,et al.  The mismatch negativity (MMN) in basic research of central auditory processing: A review , 2007, Clinical Neurophysiology.

[48]  T. Baldeweg ERP Repetition Effects and Mismatch Negativity Generation A Predictive Coding Perspective , 2007 .

[49]  U. Will,et al.  Brain wave synchronization and entrainment to periodic acoustic stimuli , 2007, Neuroscience Letters.

[50]  I. Nelken,et al.  Mismatch Negativity and Stimulus-Specific Adaptation in Animal Models , 2007 .

[51]  I. Winkler Interpreting the Mismatch Negativity , 2007 .

[52]  C. Escera,et al.  Role of Mismatch Negativity and Novelty-P3 in Involuntary Auditory Attention , 2007 .

[53]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[54]  I. Nelken,et al.  Neurons and Objects: The Case of Auditory Cortex , 2008, Front. Neurosci..

[55]  S. Debener,et al.  Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise , 2008, The Journal of Neuroscience.

[56]  I. Winkler,et al.  Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? , 2008, Biological Psychology.

[57]  Y. Gutfreund,et al.  Stimulus-Specific Adaptations in the Gaze Control System of the Barn Owl , 2008, The Journal of Neuroscience.

[58]  I. Winkler,et al.  I Heard That Coming: Event-Related Potential Evidence for Stimulus-Driven Prediction in the Auditory System , 2009, The Journal of Neuroscience.

[59]  G. Christianson,et al.  Stimulus-Specific Adaptation Occurs in the Auditory Thalamus , 2009, The Journal of Neuroscience.

[60]  M. Malmierca,et al.  Stimulus-Specific Adaptation in the Inferior Colliculus of the Anesthetized Rat , 2009, The Journal of Neuroscience.

[61]  Xue Wang,et al.  Multimodal Effects of Local Context on Target Detection: Evidence from P3b , 2009, Journal of Cognitive Neuroscience.

[62]  Karl J. Friston,et al.  Dynamic Causal Modeling of the Response to Frequency Deviants , 2009, Journal of neurophysiology.

[63]  N. Boutros,et al.  P50, N100, and P200 sensory gating: relationships with behavioral inhibition, attention, and working memory. , 2009, Psychophysiology.

[64]  M. Malmierca,et al.  Is There Stimulus-Specific Adaptation in the Medial Geniculate Body of the Rat? , 2010 .

[65]  N. Boutros,et al.  P 50 , N 100 , and P 200 sensory gating : Relationships with behavioral inhibition , attention , and working memory , 2010 .

[66]  H. Tiitinen,et al.  Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. , 2010, Psychophysiology.