Design of the ALPS II optical system

[1]  G. Mueller,et al.  The heterodyne sensing system for the ALPS II search for sub-eV weakly interacting particles , 2020, Physics of the Dark Universe.

[2]  S. Barbanotti,et al.  Straightening of superconducting HERA dipoles for the any-light-particle-search experiment ALPS II , 2020, EPJ Techniques and Instrumentation.

[3]  B. Willke,et al.  Optics mounting and alignment for the central optical bench of the dual cavity enhanced light-shining-through-a-wall experiment ALPS II. , 2020, Applied optics.

[4]  Ada A. Umińska,et al.  Ultrastable optical components using adjustable commercial mirror mounts anchored in a ULE spacer. , 2020, Applied optics.

[5]  J. R. Palamos,et al.  Sensitivity and performance of the Advanced LIGO detectors in the third observing run , 2020, Physical Review D.

[6]  Cristina V. Lopes Monolithic , 2020, Exercises in Programming Style.

[7]  A. Spector,et al.  Demonstration of a length control system for ALPS II with a high finesse 9.2 m cavity , 2020 .

[8]  M. Burghoff,et al.  Measurement of the Permanent Electric Dipole Moment of the Neutron. , 2020, Physical review letters.

[9]  L. Rosenberg,et al.  Extended Search for the Invisible Axion with the Axion Dark Matter Experiment. , 2019, Physical review letters.

[10]  P. Oppermann,et al.  Nd:YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors. , 2019, Optics Letters.

[11]  L. Chevalier,et al.  A new experimental approach to probe QCD axion dark matter in the mass range above $${ 40}\,{\upmu }\mathrm{{eV}}$$40μeV , 2019, The European Physical Journal C.

[12]  L. Chevalier,et al.  A new experimental approach to probe QCD axion dark matter in the mass range above 40 μeV , 2019 .

[13]  National Radio Astronomy Observatory,et al.  Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter. , 2018, Physical review letters.

[14]  S. Reddy,et al.  Constraints on axion-like particles and nucleon pairing in dense matter from the hot neutron star in HESS J1731-347 , 2018, Physical Review C.

[15]  L. Rosenberg,et al.  Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. , 2018, Physical review letters.

[16]  R. Maruyama,et al.  Results from phase 1 of the HAYSTAC microwave cavity axion experiment , 2018, 1803.03690.

[17]  I. Pinto,et al.  Optical scattering measurements and implications on thermal noise in Gravitational Wave detectors test-mass coatings , 2017, Physics Letters A.

[18]  G. Mueller,et al.  Single Photon Detection Using Optical Heterodyne Interferometry , 2017, 1710.04209.

[19]  M. J. Pivovaroff,et al.  New CAST limit on the axion–photon interaction , 2017, Nature Physics.

[20]  S. Lamoreaux,et al.  First Results from a Microwave Cavity Axion Search at 24  μeV. , 2016, Physical review letters.

[21]  M. Giannotti,et al.  Fermi Large Area Telescope as a Galactic Supernovae Axionscope. , 2016, Physical review letters.

[22]  M. Giannotti,et al.  Cool WISPs for stellar cooling excesses , 2015, 1512.08108.

[23]  F. Januschek,et al.  Characterization, 1064 nm photon signals and background events of a tungsten TES detector for the ALPS experiment , 2015, 1502.07878.

[24]  J. Zicha,et al.  New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall , 2015, 1506.08082.

[25]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[26]  E. Milotti,et al.  First results from the new PVLAS apparatus: A new limit on vacuum magnetic birefringence , 2014, 1406.6518.

[27]  M. J. Pivovaroff,et al.  Conceptual design of the International Axion Observatory (IAXO) , 2014, 1401.3233.

[28]  Jan Eike von Seggern,et al.  Any Light Particle Search II -- Technical Design Report , 2013, 1302.5647.

[29]  M. Raue,et al.  First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations , 2013, 1302.1208.

[30]  C Bogan,et al.  Stabilized high-power laser system for the gravitational wave detector advanced LIGO. , 2012, Optics express.

[31]  A. Ringwald,et al.  Light shining through walls , 2010, 1011.3741.

[32]  A. Ringwald,et al.  Optimizing light-shining-through-a-wall experiments for axion and other weakly interacting slim particle searches , 2010, 1009.4875.

[33]  Munich,et al.  New ALPS results on hidden-sector lightweights , 2010, 1004.1313.

[34]  G. Mueller,et al.  Detailed design of a resonantly enhanced axion-photon regeneration experiment , 2009, 0907.5387.

[35]  J. Livas,et al.  Laser frequency stabilization and control through offset sideband locking to optical cavities. , 2008, Optics express.

[36]  D. Tanner,et al.  Resonantly‐enhanced axion‐photon regeneration , 2007, hep-ph/0701198.

[37]  Benno Willke,et al.  Fundamental mode, single-frequency laser amplifier for gravitational wave detectors. , 2007, Optics express.

[38]  J. Kneib,et al.  Telescope search for decaying relic axions , 2006, astro-ph/0611502.

[39]  Bruce Leonard,et al.  Design Requirements Document , 2007 .

[40]  H. Gies,et al.  Polarized light propagating in a magnetic field as a probe for millicharged fermions. , 2006, Physical review letters.

[41]  L. Rosenberg,et al.  Large-scale microwave cavity search for dark-matter axions , 2001 .

[42]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[43]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[44]  Y. Fukuda,et al.  Production and detection of axions by using optical resonators , 1996 .

[45]  Cheng,et al.  Axion-photon couplings in invisible axion models. , 1995, Physical review. D, Particles and fields.

[46]  B. J. Meers,et al.  Automatic alignment of optical interferometers. , 1994, Applied optics.

[47]  Winkler,et al.  Heating by optical absorption and the performance of interferometric gravitational-wave detectors. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[48]  F. Hoogeveen,et al.  Production and detection of light bosons using optical resonators , 1991 .

[49]  D. Tanner,et al.  Results from a search for cosmic axions. , 1990, Physical review. D, Particles and fields.

[50]  Moskowitz,et al.  Results of a laboratory search for cosmic axions and other weakly coupled light particles. , 1989, Physical review. D, Particles and fields.

[51]  Dagdeviren,et al.  Proposed experiment to produce and detect light pseudoscalars. , 1987, Physical review letters.

[52]  Moskowitz,et al.  Limits on the abundance and coupling of cosmic axions at 4.5 , 1987, Physical review letters.

[53]  R. Byer,et al.  Monolithic, unidirectional single-mode Nd:YAG ring laser. , 1985, Optics letters.

[54]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[55]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[56]  P. Sikivie,et al.  Can galactic halos be made of axions , 1983 .

[57]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[58]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[59]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[60]  Michael Dine,et al.  A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .

[61]  A. Vainshtein,et al.  Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .

[62]  Jihn E. Kim Weak Interaction Singlet and Strong CP Invariance , 1979 .

[63]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[64]  S. Weinberg A new light boson , 1978 .

[65]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[66]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.