A simple tool for automatic extraction of Moroccan coastal upwelling from Sea Surface Temperature images

This work aims at automatically identify and extract the region covered by the upwelling waters in the costal ocean of Morocco using the well-known region-growing segmentation algorithm. The later consists in coarse segmentation of upwelling area which characterized by cold and usually nutrient-rich water near the coast. The proposed approach has been validated by an oceanographer over a database of 30 Sea Surface Temperature (SST) satellite images of the year 2007 obtained from Advanced Very High Resolution Radiometer (AVHRR) sensor onboard NOAA-18 satellite serie. The results show a robustness and effectiveness to detect and reproduce the shape of upwelling area.

[1]  A. Sekar,et al.  A Survey on Image Segmentation Techniques , 2015 .

[2]  Emmanuel Chassot,et al.  Satellite remote sensing for an ecosystem approach to fisheries management , 2011 .

[3]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[4]  Nuggehally Sampath Jayant,et al.  An adaptive clustering algorithm for image segmentation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[5]  Larry L. Stowe,et al.  Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm f , 1999 .

[6]  Swapnil Chaudhari,et al.  Upwelling Detection in AVHRR Sea Surface Temperature (SST) Images using Neural-Network Framework , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[7]  M. Olivar,et al.  Fronts and eddies as key structures in the habitat of marine fish larvae : opportunity , adaptive response and competitive advantage , 2006 .

[8]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[9]  James C. McWilliams,et al.  Gradient-based edge detection and feature classification of sea-surface images of the Southern California Bight , 2008 .

[10]  Sarah H. Peckinpaugh,et al.  Edge detection applied to satellite imagery of the oceans , 1989 .

[11]  Jake K. Aggarwal,et al.  The Integration of Image Segmentation Maps using Region and Edge Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Theodosios Pavlidis,et al.  Integrating Region Growing and Edge Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Xiaobo Li,et al.  Adaptive image region-growing , 1994, IEEE Trans. Image Process..

[14]  Driss Aboutajdine,et al.  A simple and efficient approach for coarse segmentation of Moroccan coastal upwelling , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[15]  Sang Uk Lee,et al.  On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques , 1990, Pattern Recognit..

[16]  John F. Haddon,et al.  Image Segmentation by Unifying Region and Boundary Information , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Peter Cornillon,et al.  Edge Detection Algorithm for SST Images , 1992 .

[18]  Antoine Mangin,et al.  Produits opérationnels d'océanographie spatiale pour le suivi et l'analyse du phénomène d'upwelling marocain , 2005 .

[19]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[20]  Ferran Marqués,et al.  Automatic tool for the precise detection of upwelling and filaments in remote sensing imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Josef Kittler,et al.  A performance measure of boundary detection algorithms , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[22]  P. Sivakumar,et al.  A REVIEW ON IMAGE SEGMENTATION TECHNIQUES , 2016 .

[23]  Susana Nascimento,et al.  Automated computational delimitation of SST upwelling areas using fuzzy clustering , 2012, Comput. Geosci..

[24]  Michael Spann,et al.  Segmentation of 2D and 3D images through a hierarchical clustering based on region modelling , 1997, Proceedings of International Conference on Image Processing.