Optimization strategies for non-linear material parameters identification in metal forming problems
暂无分享,去创建一个
António Andrade-Campos | Robertt A. F. Valente | R. Valente | A. Andrade-Campos | R. de-Carvalho | R. de-Carvalho
[1] R. Rivlin. Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[2] Sandrine Thuillier,et al. Comparison of the work-hardening of metallic sheets using tensile and shear strain paths , 2009 .
[3] R. M. Natal Jorge,et al. A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone‐Rubber and Soft Tissues , 2006 .
[4] Jian Cao,et al. A study on formulation of objective functions for determining material models , 2008 .
[5] Filipe Teixeira-Dias,et al. On the determination of material parameters for internal variable thermoelastic-viscoplastic constitutive models , 2007 .
[6] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[7] E. Chong,et al. Introduction to optimization , 1987 .
[8] J. Chaboche,et al. AGICE : logiciel pour l'identification interactive graphique des lois de comportement , 1991 .
[9] J. Ponthot,et al. A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation , 2006 .
[10] M. Grédiac,et al. A New Method for Determination of Bending Rigidities of Thin Anisotropic Plates , 1990 .
[11] Bernhard A. Schrefler,et al. Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading , 2002 .
[12] Jean-Louis Chaboche,et al. A review of some plasticity and viscoplasticity constitutive theories , 2008 .
[13] R. Hill. A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[14] D. R. Veronda,et al. Mechanical characterization of skin-finite deformations. , 1970, Journal of biomechanics.
[15] M. Mooney. A Theory of Large Elastic Deformation , 1940 .
[16] Rolf Mahnken,et al. A unified approach for parameter identification of inelastic material models in the frame of the finite element method , 1996 .
[17] J. Chenot,et al. An inverse analysis using a finite element model for identification of rheological parameters , 1996 .
[18] Filipe Teixeira-Dias,et al. Software Development for Inverse Determination of Constitutive Model Parameters , 2009 .
[19] E. H. Twizell,et al. Non-linear optimization of the material constants in Ogden's stress-deformation function for incompressinle isotropic elastic materials , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[20] Jay D. Humphrey,et al. Review Paper: Continuum biomechanics of soft biological tissues , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[21] M Reyes Sierra,et al. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .
[22] Jean-Claude Gelin,et al. An inverse solution procedure for material parameters identification in large plastic deformations , 1996 .
[23] J. Lemaitre,et al. Mécanique des matériaux solides , 1996 .
[24] D. Schnur,et al. An inverse method for determining elastic material properties and a material interface , 1992 .
[25] Jean-Claude Gelin,et al. An inverse method for determining viscoplastic properties of aluminium alloys , 1994 .
[26] Hubert Maigre,et al. Inverse Problems in Engineering Mechanics , 1994 .
[27] A. Belegundu,et al. Optimization Concepts and Applications in Engineering , 2011 .
[28] O. Yeoh. Some Forms of the Strain Energy Function for Rubber , 1993 .
[29] J. A. C. Martins,et al. A numerical model of passive and active behavior of skeletal muscles , 1998 .