Adaptive sparse polynomial chaos expansion based on least angle regression

Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e. of Galerkin type) or non intrusive) unaffordable when the deterministic finite element model is expensive to evaluate. To address such problems, the paper describes a non intrusive method that builds a sparse PC expansion. First, an original strategy for truncating the PC expansions, based on hyperbolic index sets, is proposed. Then an adaptive algorithm based on least angle regression (LAR) is devised for automatically detecting the significant coefficients of the PC expansion. Beside the sparsity of the basis, the experimental design used at each step of the algorithm is systematically complemented in order to avoid the overfitting phenomenon. The accuracy of the PC metamodel is checked using an estimate inspired by statistical learning theory, namely the corrected leave-one-out error. As a consequence, a rather small number of PC terms are eventually retained (sparse representation), which may be obtained at a reduced computational cost compared to the classical ''full'' PC approximation. The convergence of the algorithm is shown on an analytical function. Then the method is illustrated on three stochastic finite element problems. The first model features 10 input random variables, whereas the two others involve an input random field, which is discretized into 38 and 30-500 random variables, respectively.

[1]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[2]  Gilbert Saporta,et al.  Probabilités, Analyse des données et statistique , 1991 .

[3]  R. Ghanem,et al.  Stochastic Finite-Element Analysis of Seismic Soil-Structure Interaction , 2002 .

[4]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[5]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[6]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[7]  Bruce R. Ellingwood,et al.  Orthogonal Series Expansions of Random Fields in Reliability Analysis , 1994 .

[8]  M. Grigoriu,et al.  Calibration and Simulation of Non-Gaussian Translation Processes , 1996 .

[9]  R. Grandhi,et al.  Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .

[10]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[11]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[12]  Michel Loève,et al.  Probability Theory I , 1977 .

[13]  Bruno Sudret,et al.  Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .

[14]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[15]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[16]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[17]  T. Ishigami,et al.  An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.

[18]  Bruno Sudret,et al.  Non linear non intrusive stochastic finite element method-A pplication to a fracture mechanics problem , 2004 .

[19]  Byung Man Kwak,et al.  Response surface augmented moment method for efficient reliability analysis , 2006 .

[20]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  George E. Karniadakis,et al.  Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators , 2005, SIAM J. Sci. Comput..

[22]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[23]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[24]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[25]  A. Owen Detecting Near Linearity in High Dimensions , 1998 .

[26]  A. Nouy A generalized spectral decomposition technique to solve stochastic partial difierential equations , 2007 .

[27]  D. Madigan Discussion of Least Angle Regression , 2003 .

[28]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[29]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[30]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[31]  Andrew J. KeaneComputational Stochastic Reduced Basis Methods , 2001 .

[32]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[33]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[34]  Bruno Sudret,et al.  Eléments finis stochastiques en élasticité linéaire , 2004 .

[35]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[36]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[37]  G. Blatman,et al.  Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .

[38]  Annette M. Molinaro,et al.  Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..

[39]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[40]  Anthony Nouy,et al.  Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..

[41]  Yoshua Bengio,et al.  Model Selection for Small Sample Regression , 2002, Machine Learning.

[42]  David Madigan,et al.  Discussion of "Least angle regression" by Efron et al , 2004 .

[43]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[44]  George E. Karniadakis,et al.  Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..

[45]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .

[46]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[47]  D. Madigan,et al.  [Least Angle Regression]: Discussion , 2004 .

[48]  K. Phoon,et al.  Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .

[49]  George Stefanou,et al.  An enhanced hybrid method for the simulation of highly skewed non-Gaussian stochastic fields , 2005 .

[50]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[51]  M. Grigoriu Simulation of stationary non-Gaussian translation processes , 1998 .

[52]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[53]  M. Berveiller,et al.  Eléments finis stochastiques : approches intrusive et non intrusive pour des analyses de fiabilité , 2005 .

[54]  Armen Der Kiureghian,et al.  Comparison of finite element reliability methods , 2002 .

[55]  Rupert G. Miller The jackknife-a review , 1974 .

[56]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[57]  Andy J. Keane,et al.  Hybridization of stochastic reduced basis methods with polynomial chaos expansions , 2006 .

[58]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[59]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[60]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[61]  Hermann G. Matthies,et al.  Sparse Quadrature as an Alternative to Monte Carlo for Stochastic Finite Element Techniques , 2003 .

[62]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..