Adaptive sparse polynomial chaos expansion based on least angle regression
暂无分享,去创建一个
[1] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[2] Gilbert Saporta,et al. Probabilités, Analyse des données et statistique , 1991 .
[3] R. Ghanem,et al. Stochastic Finite-Element Analysis of Seismic Soil-Structure Interaction , 2002 .
[4] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[5] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[6] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[7] Bruce R. Ellingwood,et al. Orthogonal Series Expansions of Random Fields in Reliability Analysis , 1994 .
[8] M. Grigoriu,et al. Calibration and Simulation of Non-Gaussian Translation Processes , 1996 .
[9] R. Grandhi,et al. Polynomial Chaos Expansion with Latin Hypercube Sampling for Estimating Response Variability , 2003 .
[10] D. Xiu,et al. Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .
[11] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[12] Michel Loève,et al. Probability Theory I , 1977 .
[13] Bruno Sudret,et al. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .
[14] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .
[15] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[16] BabuskaIvo,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .
[17] T. Ishigami,et al. An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.
[18] Bruno Sudret,et al. Non linear non intrusive stochastic finite element method-A pplication to a fracture mechanics problem , 2004 .
[19] Byung Man Kwak,et al. Response surface augmented moment method for efficient reliability analysis , 2006 .
[20] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[21] George E. Karniadakis,et al. Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators , 2005, SIAM J. Sci. Comput..
[22] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .
[23] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[24] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[25] A. Owen. Detecting Near Linearity in High Dimensions , 1998 .
[26] A. Nouy. A generalized spectral decomposition technique to solve stochastic partial difierential equations , 2007 .
[27] D. Madigan. Discussion of Least Angle Regression , 2003 .
[28] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[29] M. Eldred. Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .
[30] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[31] Andrew J. KeaneComputational. Stochastic Reduced Basis Methods , 2001 .
[32] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[33] Margaret J. Robertson,et al. Design and Analysis of Experiments , 2006, Handbook of statistics.
[34] Bruno Sudret,et al. Eléments finis stochastiques en élasticité linéaire , 2004 .
[35] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[36] M. Lemaire,et al. Stochastic finite element: a non intrusive approach by regression , 2006 .
[37] G. Blatman,et al. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .
[38] Annette M. Molinaro,et al. Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..
[39] Joseph A. C. Delaney. Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.
[40] Anthony Nouy,et al. Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..
[41] Yoshua Bengio,et al. Model Selection for Small Sample Regression , 2002, Machine Learning.
[42] David Madigan,et al. Discussion of "Least angle regression" by Efron et al , 2004 .
[43] Bruno Sudret,et al. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..
[44] George E. Karniadakis,et al. Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..
[45] Jeroen A. S. Witteveen,et al. Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .
[46] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[47] D. Madigan,et al. [Least Angle Regression]: Discussion , 2004 .
[48] K. Phoon,et al. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .
[49] George Stefanou,et al. An enhanced hybrid method for the simulation of highly skewed non-Gaussian stochastic fields , 2005 .
[50] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[51] M. Grigoriu. Simulation of stationary non-Gaussian translation processes , 1998 .
[52] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[53] M. Berveiller,et al. Eléments finis stochastiques : approches intrusive et non intrusive pour des analyses de fiabilité , 2005 .
[54] Armen Der Kiureghian,et al. Comparison of finite element reliability methods , 2002 .
[55] Rupert G. Miller. The jackknife-a review , 1974 .
[56] W. Schoutens. Stochastic processes and orthogonal polynomials , 2000 .
[57] Andy J. Keane,et al. Hybridization of stochastic reduced basis methods with polynomial chaos expansions , 2006 .
[58] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[59] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[60] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[61] Hermann G. Matthies,et al. Sparse Quadrature as an Alternative to Monte Carlo for Stochastic Finite Element Techniques , 2003 .
[62] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..