Marked length rigidity for one-dimensional spaces

In a compact geodesic metric space of topological dimension one, the minimal length of a loop in a free homotopy class is well-defined, and provides a function [Formula: see text] (the value [Formula: see text] being assigned to loops which are not freely homotopic to any rectifiable loops). This function is the marked length spectrum. We introduce a subset [Formula: see text], which is the union of all non-constant minimal loops of finite length. We show that if [Formula: see text] is a compact, non-contractible, geodesic space of topological dimension one, then [Formula: see text] deformation retracts to [Formula: see text]. Moreover, [Formula: see text] can be characterized as the minimal subset of [Formula: see text] to which [Formula: see text] deformation retracts. Let [Formula: see text] be a pair of compact, non-contractible, geodesic metric spaces of topological dimension one, and set [Formula: see text]. We prove that any isomorphism [Formula: see text] satisfying [Formula: see text], forces the existence of an isometry [Formula: see text] which induces the map [Formula: see text] on the level of fundamental groups. Thus, for compact, non-contractible, geodesic spaces of topological dimension one, the marked length spectrum completely determines the subset [Formula: see text] up to isometry.

[1]  M. Curtis,et al.  Homotopy groups of one-dimensional spaces , 1957 .

[2]  M. Curtis,et al.  The fundamental group of one-dimensional spaces , 1959 .

[3]  J. Hatzenbuhler,et al.  DIMENSION THEORY , 1997 .

[4]  J. Morgan,et al.  Group Actions On R‐Trees , 1987 .

[5]  Hyman Bass,et al.  LENGTH FUNCTIONS OF GROUP ACTIONS ON A-TREES , 1987 .

[6]  U. Hamenstädt Entropy-rigidity of locally symmetric spaces of negative curvature , 1990 .

[7]  Jean-Pierre Otal Le spectre marqué des longueurs des surfaces à courbure négative , 1990 .

[8]  C. Croke,et al.  Rigidity for surfaces of non-positive curvature , 1990 .

[9]  B. M. Fulk MATH , 1992 .

[10]  F. Paulin,et al.  On the rigidity of discrete isometry groups of negatively curved spaces , 1997 .

[11]  Free σ-products and fundamental groups of subspaces of the plane , 1998 .

[12]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[13]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[14]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[15]  The fundamental groups of one-dimensional spaces and spatial homomorphisms , 2002 .

[16]  I. Kim,et al.  Marked length rigidity for symmetric spaces , 2002 .

[17]  J. Cannon,et al.  On the fundamental groups of one-dimensional spaces ✩ , 2006 .

[18]  Mladen Bestvina R-trees in topology , geometry , and group theory , 2008 .

[19]  B. Steinhurst,et al.  Eigenmodes of the Laplacian on some Laakso spaces , 2009, 0903.4661.

[20]  Homotopy types of one-dimensional Peano continua , 2010 .

[21]  한성민,et al.  3 , 1823, Dance for Me When I Die.

[22]  Arc-reduced forms for Peano continua☆ , 2012, Topology and its applications.

[23]  Deforestation of Peano continua and minimal deformation retracts☆ , 2012, Topology and its applications.

[24]  G. Conner,et al.  Fundamental groups of locally connected subsets of the plane , 2011, Advances in Mathematics.