Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities.

We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on mode-gap photonic crystal cavities with light localization in an air mode with 0.02(λ/n)3 modal volumes while preserving optical cavity Q up to 5×10(6). The mechanical mode is modeled to have fundamental resonance Ωm/2π of 460 MHz and a quality factor Qm estimated at 12,000. For this slot-type optomechanical cavity, the dispersive coupling gom is numerically computed at up to 940 GHz/nm (Lom of 202 nm) for the fundamental optomechanical mode. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for various operating parameters.

[1]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[2]  M. Lipson,et al.  Controlling photonic structures using optical forces , 2009, Nature.

[3]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[4]  Oskar Painter,et al.  Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity , 2010, 1006.3964.

[5]  Steven G. Johnson,et al.  Evanescent-wave bonding between optical waveguides. , 2005, Optics letters.

[6]  S. Assefa,et al.  Demonstration of an Air-Slot Mode-Gap Confined Photonic Crystal Slab Nanocavity with Ultrasmall Mode Volumes , 2010 .

[7]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[8]  T. Baehr‐Jones,et al.  Harnessing optical forces in integrated photonic circuits , 2008, Nature.

[9]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2010 .

[10]  D. Bouwmeester Sub-kelvin optical cooling of a micromechanical resonator , 2007 .

[11]  Brian H. Houston,et al.  Thermoelastic damping in micromechanical resonators , 2009 .

[12]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[13]  M. Notomi,et al.  Strong radiation force induced in two-dimensional photonic crystal slab cavities , 2008 .

[14]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[15]  Michael Hochberg,et al.  High-Q Optical Resonators in Silicon-on-Insulator-Based Slot Waveguides , 2005 .

[16]  S. Chu,et al.  Laser Manipulation of Atoms and Particles , 1991, Science.

[17]  K. Vahala,et al.  Cavity opto-mechanics , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[18]  K. Vahala,et al.  Radiation-pressure-driven micro-mechanical oscillator , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[19]  Andrey B. Matsko,et al.  Cavity Opto-Mechanics , 2009 .

[20]  K. Vahala,et al.  Photonic RF Down-Converter Based on Optomechanical Oscillation , 2008, IEEE Photonics Technology Letters.

[21]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[22]  M. Notomi,et al.  Strong optomechanical interaction in a bilayer photonic crystal , 2010 .

[23]  Hailin Wang,et al.  Resolved-sideband and cryogenic cooling of an optomechanical resonator , 2009 .

[24]  Ali Dabirian,et al.  Radiation pressure driven vibrational modes in ultra-high-Q silica microspheres , 2007 .

[25]  T. Krauss,et al.  Chemical sensing in slotted photonic crystal heterostructure cavities , 2009 .

[26]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[27]  D. Thourhout,et al.  Optomechanical device actuation through the optical gradient force , 2010 .

[28]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[29]  M. Notomi,et al.  Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs. , 2006, Physical review letters.

[30]  J. M. Worlock,et al.  Modeling Dispersive Coupling and Losses of Localized Optical and Mechanical Modes in Optomechanical Crystals References and Linkssensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum , 2022 .

[31]  Ivan Favero,et al.  Optomechanics of deformable optical cavities , 2009 .

[32]  L. Andreani,et al.  Silicon-based two-dimensional photonic crystal waveguides , 2003 .

[33]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[34]  W. Pernice,et al.  Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. , 2009, Physical review letters.

[35]  Masaya Notomi,et al.  Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab. , 2008, Optics express.

[36]  Masaya Notomi,et al.  Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect , 2006 .

[37]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[38]  P. Deotare,et al.  Programmable photonic crystal nanobeam cavities. , 2010, Optics express.

[39]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[40]  Laser cooling of a nanomechanical resonator mode to its quantum ground state. , 2003, Physical review letters.

[41]  K. Vahala,et al.  Mechanical oscillation and cooling actuated by the optical gradient force. , 2009, Physical review letters.

[42]  Oskar Painter,et al.  Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[43]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[44]  Lorenzo Pavesi,et al.  Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides. , 2007, Optics express.

[45]  Kerry J. Vahala,et al.  Coherent mixing of mechanical excitations in nano-optomechanical structures , 2009, 0908.1128.

[46]  M. Soljačić,et al.  Trapping, corralling and spectral bonding of optical resonances through optically induced potentials , 2007 .

[47]  W. Pernice,et al.  Tunable bipolar optical interactions between guided lightwaves , 2009, 0903.5117.

[48]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[49]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2008, Nature.

[50]  S. Strigin,et al.  Parametric oscillatory instability in Fabry-Perot interferometer , 2001, gr-qc/0107079.

[51]  A. L. Kimball,et al.  Internal Friction in Solids , 1926, Transactions of the American Society of Mechanical Engineers.

[52]  S. Senturia Microsystem Design , 2000 .

[53]  Steven G. Johnson,et al.  Strain-tunable silicon photonic band gap microcavities in optical waveguides , 2004 .

[54]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[55]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[56]  Michal Lipson,et al.  Ultrasmall mode volumes in dielectric optical microcavities. , 2005, Physical review letters.

[57]  A. B. Manukin,et al.  Measurement of Weak Forces in Physics Experiments , 1977 .

[58]  Oskar Painter,et al.  Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces , 2007 .

[59]  P. Meystre,et al.  Mechanical Effects of Light , 2021, Quantum Optics.

[60]  Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[61]  Tal Carmon,et al.  Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. , 2005, Physical review letters.

[62]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  A. Adibi,et al.  Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. , 2010, Optics Express.

[64]  Mancini,et al.  Quantum noise reduction by radiation pressure. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[65]  O. Painter,et al.  Tunable 2D photonic crystal cavities for cavity electro-optomechanics , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[66]  H. Kimble,et al.  Cavity optomechanics with stoichiometric SiN films. , 2009, Physical review letters.

[67]  S. Xiao,et al.  Compact silicon microring resonators with ultra-low propagation loss in the C band. , 2007, Optics express.