Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects

Impact craters on Pluto and Charon Collisions between Solar System bodies produce impact craters on large objects at a rate that depends on the population of impacting small bodies. Singer et al. examined impact craters on Pluto and its moon Charon. Some regions have had their impact craters erased by recent geological processes, but others appear to record 4 billion years of impacts. Because Pluto and Charon are located in the Kuiper belt, the distribution of crater sizes reflects the size distribution of impacting Kuiper belt objects (KBOs). The authors found fewer small KBOs than predicted by models of collision equilibrium, implying that some of the KBO population has been preserved since the formation of the Solar System. Science, this issue p. 955 Impact craters on Pluto and its moon Charon are used to determine the size distribution of impacting Kuiper Belt objects. The flyby of Pluto and Charon by the New Horizons spacecraft provided high-resolution images of cratered surfaces embedded in the Kuiper belt, an extensive region of bodies orbiting beyond Neptune. Impact craters on Pluto and Charon were formed by collisions with other Kuiper belt objects (KBOs) with diameters from ~40 kilometers to ~300 meters, smaller than most KBOs observed directly by telescopes. We find a relative paucity of small craters ≲13 kilometers in diameter, which cannot be explained solely by geological resurfacing. This implies a deficit of small KBOs (≲1 to 2 kilometers in diameter). Some surfaces on Pluto and Charon are likely ≳4 billion years old, thus their crater records provide information on the size-frequency distribution of KBOs in the early Solar System.

[1]  Newell J. Trask,et al.  The Geologic History of the Moon , 2020 .

[2]  nasa,et al.  Standard techniques for presentation and analysis of crater size-frequency data , 2019 .

[3]  P. Armitage,et al.  The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of the Radial Gas Pressure Gradient , 2018, The Astrophysical Journal.

[4]  T. Lauer,et al.  Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy Moon Charon from New Horizons , 2018, Icarus.

[5]  Tod R. Lauer,et al.  Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons , 2018, Icarus.

[6]  P. Schenk,et al.  Relaxed impact craters on Ganymede: Regional variation and high heat flows , 2018 .

[7]  Lisa R. Gaddis,et al.  Revised recommended methods for analyzing crater size‐frequency distributions , 2018 .

[8]  D. Reuter,et al.  Investigation of Charon's Craters With Abrupt Terminus Ejecta, Comparisons With Other Icy Bodies, and Formation Implications , 2018 .

[9]  P. Schenk,et al.  Viscous relaxation of Ganymede’s impact craters: Constraints on heat flux , 2017 .

[10]  Rixin Li,et al.  Evidence for Universality in the Initial Planetesimal Mass Function , 2017, 1705.03889.

[11]  T. Lauer,et al.  Craters of the Pluto-Charon System , 2017 .

[12]  T. Lauer,et al.  Geological mapping of Sputnik Planitia on Pluto , 2017 .

[13]  T. Lauer,et al.  Charon tectonics , 2016, Icarus.

[14]  W. Benz,et al.  How primordial is the structure of comet 67P? - Combined collisional and dynamical models suggest a late formation , 2016, 1611.02604.

[15]  T. Lauer,et al.  New Horizons constraints on Charon's present day atmosphere , 2016, 1608.06955.

[16]  D. Reuter,et al.  Inflight radiometric calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC) , 2016, 1603.08940.

[17]  B. Gladman,et al.  Corrigendum to “Impact and Cratering Rates onto Pluto” [Icarus 258 (2015) 267–288] , 2016 .

[18]  M. Granvik,et al.  OSSOS: IV. Discovery of a dwarf planet candidate in the 9:2 resonance , 2016, 1607.06970.

[19]  O. Umurhan,et al.  Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour , 2016, Nature.

[20]  K. Kratter,et al.  The fate of debris in the Pluto-Charon system , 2016, 1609.08635.

[21]  D. E. Jennings,et al.  Surface compositions across Pluto and Charon , 2016, Science.

[22]  T. Lauer,et al.  The geology of Pluto and Charon through the eyes of New Horizons , 2016, Science.

[23]  O. Umurhan,et al.  Present and past glaciation on Pluto , 2016 .

[24]  John C. Geary,et al.  Status of the Transneptunian Automated Occultation Survey (TAOS II) , 2013, Astronomical Telescopes + Instrumentation.

[25]  P. Armitage,et al.  THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY , 2015, 1512.00009.

[26]  M. T. Bannister,et al.  OSSOS. II. A SHARP TRANSITION IN THE ABSOLUTE MAGNITUDE DISTRIBUTION OF THE KUIPER BELT’S SCATTERING POPULATION , 2015, 1511.02896.

[27]  S. Debei,et al.  The primordial nucleus of comet 67P/Churyumov-Gerasimenko , 2015 .

[28]  Michele T. Bannister,et al.  OSSOS III—RESONANT TRANS-NEPTUNIAN POPULATIONS: CONSTRAINTS FROM THE FIRST QUARTER OF THE OUTER SOLAR SYSTEM ORIGINS SURVEY , 2015, 1604.08177.

[29]  C. M. Lisse,et al.  The Pluto system: Initial results from its exploration by New Horizons , 2015, Science.

[30]  B. Gladman,et al.  Impact and cratering rates onto Pluto , 2015 .

[31]  E. Asphaug,et al.  The shape and structure of cometary nuclei as a result of low-velocity accretion , 2015, Science.

[32]  S. Stern,et al.  ON THE PROVENANCE OF PLUTO’S NITROGEN (N2) , 2015, 1506.00913.

[33]  Laboratoire d'Astrophysique de Marseille,et al.  Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations , 2015, 1505.07021.

[34]  Hans Rickman,et al.  Comets as collisional fragments of a primordial planetesimal disk , 2015, 1504.04512.

[35]  R. Binzel,et al.  Pluto’s insolation history: Latitudinal variations and effects on atmospheric pressure , 2015 .

[36]  A. Johansen,et al.  Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion , 2015, Science Advances.

[37]  L. Dones,et al.  Craters and ejecta on Pluto and Charon: Anticipated results from the New Horizons flyby , 2015 .

[38]  S. Stern,et al.  On the roles of escape erosion and the viscous relaxation of craters on Pluto , 2014, 1412.1405.

[39]  Stephen J. Mackwell,et al.  Lunar and Planetary Science XLVI : abstracts presented at the 46th Lunar and Planetary Science Conference March 16-20, 2015 , 2015 .

[40]  A. Doressoundiram,et al.  Search for sub-kilometre trans-Neptunian objects using CoRoT asteroseismology data , 2015 .

[41]  S. Debei,et al.  Rosetta mission results pre-perihelion Special feature Comet 67 P / Churyumov-Gerasimenko : Constraints on its origin from OSIRIS observations , 2015 .

[42]  B. Gladman,et al.  A CAREFULLY CHARACTERIZED AND TRACKED TRANS-NEPTUNIAN SURVEY: THE SIZE DISTRIBUTION OF THE PLUTINOS AND THE NUMBER OF NEPTUNIAN TROJANS , 2014, 1411.7953.

[43]  C. Russell,et al.  The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites , 2014 .

[44]  F. Yoshida,et al.  The inner solar system cratering record and the evolution of impactor populations , 2014, 1407.4521.

[45]  Clark R. Chapman,et al.  The variability of crater identification among expert and community crater analysts , 2014, 1404.1334.

[46]  W. Fraser,et al.  THE ABSOLUTE MAGNITUDE DISTRIBUTION OF KUIPER BELT OBJECTS , 2014, 1401.2157.

[47]  Tucson,et al.  Small crater populations on Vesta , 2013, 1305.6679.

[48]  Kelsi N. Singer,et al.  Secondary craters from large impacts on Europa and Ganymede: Ejecta size–velocity distributions on icy worlds, and the scaling of ejected blocks , 2013 .

[49]  David E. Trilling,et al.  INITIAL PLANETESIMAL SIZES AND THE SIZE DISTRIBUTION OF SMALL KUIPER BELT OBJECTS , 2013, 1301.7433.

[50]  M. J. Lehner,et al.  THE TAOS PROJECT: RESULTS FROM SEVEN YEARS OF SURVEY DATA , 2013, 1301.6182.

[51]  B. Weiner,et al.  THE CLUSTERING OF EXTREMELY RED OBJECTS , 2012, 1211.6798.

[52]  N. Kaib,et al.  A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS , 2012, 1210.4827.

[53]  Philip Muirhead,et al.  MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS , 2012, 1210.8155.

[54]  W. Bottke,et al.  The onset of the lunar cataclysm as recorded in its ancient crater populations , 2012 .

[55]  S. Kenyon,et al.  COAGULATION CALCULATIONS OF ICY PLANET FORMATION AT 15–150 AU: A CORRELATION BETWEEN THE MAXIMUM RADIUS AND THE SLOPE OF THE SIZE DISTRIBUTION FOR TRANS-NEPTUNIAN OBJECTS , 2012, 1201.4395.

[56]  H. Jay Melosh,et al.  Planetary Surface Processes: References , 2011 .

[57]  Kevin R. Housen,et al.  Ejecta from impact craters , 2011 .

[58]  A. Youdin,et al.  FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE , 2010, 1007.1465.

[59]  R. Malhotra,et al.  Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System , 2009, 0909.3875.

[60]  A. Youdin,et al.  Forming Planetesimals in Solar and Extrasolar Nebulae , 2009, 0909.2652.

[61]  E. Ofek,et al.  A single sub-kilometre Kuiper belt object from a stellar occultation in archival data , 2009, Nature.

[62]  Larry W. Esposito,et al.  Saturn from Cassini-Huygens , 2009 .

[63]  W. C. Fraser,et al.  A derivation of the luminosity function of the Kuiper belt from a broken power-law size distribution , 2008, 0809.0313.

[64]  Cesar I. Fuentes,et al.  A SUBARU ARCHIVAL SEARCH FOR FAINT TRANS-NEPTUNIAN OBJECTS , 2008 .

[65]  The Kuiper belt luminosity function from mR = 21 to 26 , 2008, 0802.2285.

[66]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[67]  E. H. Darlington,et al.  Long-Range Reconnaissance Imager on New Horizons , 2007, 0709.4278.

[68]  MPIA Heidelberg,et al.  Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods , 2007, astro-ph/0702625.

[69]  Alfred S. McEwen,et al.  THE IMPORTANCE OF SECONDARY CRATERING TO AGE CONSTRAINTS ON PLANETARY SURFACES , 2006 .

[70]  M. Meerschaert,et al.  Parameter Estimation for the Truncated Pareto Distribution , 2006 .

[71]  A. Dombard,et al.  Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto , 2006 .

[72]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[73]  Clark R. Chapman,et al.  Secondary craters on Europa and implications for cratered surfaces , 2005, Nature.

[74]  Stuart McMuldroch,et al.  Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission , 2005, SPIE Optics + Photonics.

[75]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[76]  R. Sari,et al.  Shaping the Kuiper belt size distribution by shattering large but strengthless bodies , 2004, astro-ph/0402138.

[77]  S. Kenyon,et al.  The Size Distribution of Kuiper Belt Objects , 2004, astro-ph/0406556.

[78]  G. Bernstein,et al.  The Size Distribution of Trans-Neptunian Bodies , 2003, astro-ph/0308467.

[79]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[80]  Alessandro Morbidelli,et al.  The Structure of the Kuiper Belt: Size Distribution and Radial Extent , 2001 .

[81]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[82]  J. Luu,et al.  Accretion in the Early Kuiper Belt. II. Fragmentation , 1999, astro-ph/9904115.

[83]  Scott J. Kenyon,et al.  Accretion in the Early Kuiper Belt , 1999 .

[84]  S. Stern,et al.  Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30-50 AU Kuiper Gap , 1997 .

[85]  Paolo Farinella,et al.  Collisional Evolution of Edgeworth–Kuiper Belt Objects , 1997 .

[86]  Paul M. Schenk,et al.  Estimates of comet fragment masses from impact crater chains on Callisto and Ganymede , 1995 .

[87]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[88]  M. Gurnis Martian cratering revisited - Implications for early geologic evolution , 1981 .

[89]  M. Gurnis Martian cratering revisited. , 1980 .

[90]  D. Arthur,et al.  The system of lunar craters, quadrant III. , 1965 .