α1-Antitrypsin phenotypes and associated serum protein concentrations in a large clinical population.

BACKGROUND α1-Antitrypsin (AAT) deficiency variants reduce the concentration of serum AAT protease inhibitor and can lead to the development of pulmonary and hepatic disease. Relative frequencies of rare AAT variant phenotypes (non-M, Z, and S) and associated serum concentrations in the clinical population have not been thoroughly described. METHODS Protein phenotypes were determined by isoelectric focusing electrophoresis for 72,229 consecutive samples. Phenotype frequencies, median serum concentrations, and central 95% concentration intervals were determined for observed phenotypes. Concurrent AAT phenotype and concentration data were used to evaluate the efficacy of using serum AAT concentration alone to detect AAT deficiency. RESULTS Age, race, and sex had only slight effects on the median 95% serum protein concentration intervals of the 58,087 PiMM (wild type) phenotype specimens. Positive predictive values were calculated for the detection of potential deficiency phenotypes at different serum cutoff concentrations, aiding potential screening effort design. For example, the PiZZ deficiency phenotype (n = 814) could be detected at 99.5% sensitivity and 96.5% specificity using a cutoff of ≤ 85 mg/dL. However, at-risk specimens with two putative deleterious variants (Z, S, I, F, P, T, and Null variants) were detected with only 85.9% sensitivity at this cutoff (n = 1,661). Rare phenotype variants were observed in 2.5% of samples. CONCLUSIONS This analysis provides novel information on serum AAT concentrations associated with different AAT phenotypes and provides insight into the severity of depression of AAT concentration in the presence of rare deficiency variants. Additionally, it allows for evaluation of efficacy of testing algorithms incorporating AAT serum concentration determination.

[1]  J. Stoller,et al.  A review of α1-antitrypsin deficiency. , 2012, American journal of respiratory and critical care medicine.

[2]  H. R. Bergen,et al.  Simultaneous phenotyping and quantification of α-1-antitrypsin by liquid chromatography-tandem mass spectrometry. , 2011, Clinical chemistry.

[3]  Kevin McCarthy,et al.  Impact of a clinical decision support system in an electronic health record to enhance detection of α₁-antitrypsin deficiency. , 2011, Chest.

[4]  R. Sifers Intracellular processing of alpha1-antitrypsin. , 2010, Proceedings of the American Thoracic Society.

[5]  C. Strange,et al.  Is PiSS Alpha-1 Antitrypsin Deficiency Associated with Disease? , 2010, Pulmonary medicine.

[6]  J. Stoller,et al.  Detection of alpha-1 antitrypsin deficiency: a review. , 2009, Respiratory medicine.

[7]  P. Beaune,et al.  Automated determination of serum alpha1-antitrypsin by antitryptic activity measurement. , 2009, Clinical chemistry.

[8]  A. Tavill,et al.  Liver Disease in Alpha 1-Antitrypsin Deficiency: A Review , 2008, The American Journal of Gastroenterology.

[9]  W. Bamlet,et al.  Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. , 2008, Archives of internal medicine.

[10]  C. Strange,et al.  Primary care diagnosis of alpha-1 antitrypsin deficiency: issues and opportunities. , 2007, Cleveland Clinic journal of medicine.

[11]  R. Mao,et al.  Genotypes and serum concentrations of human alpha-1-antitrypsin “P” protein variants in a clinical population , 2007, Journal of Clinical Pathology.

[12]  R. Mao,et al.  Evaluation of an integrative diagnostic algorithm for the identification of people at risk for alpha1-antitrypsin deficiency. , 2007, American journal of clinical pathology.

[13]  C. Vogelmeier,et al.  Identification of individuals with alpha-1-antitrypsin deficiency by a targeted screening program. , 2007, Respiratory medicine.

[14]  M. Brantly Efficient and Accurate Approaches to the Laboratory Diagnosis of α1-Antitrypsin Deficiency: The Promise of Early Diagnosis and Intervention , 2006 .

[15]  M. Zorzetto,et al.  Validation of a rapid, simple method to measure alpha1-antitrypsin in human dried blood spots. , 2006, Clinical chemistry.

[16]  A. Pezzini,et al.  Diagnostic flow chart for targeted detection of alpha1-antitrypsin deficiency. , 2006, Respiratory medicine.

[17]  C. Strange,et al.  Delay in Diagnosis of α1-Antitrypsin Deficiency: A Continuing Problem , 2005 .

[18]  M. Campos,et al.  Trends in the diagnosis of symptomatic patients with alpha1-antitrypsin deficiency between 1968 and 2003. , 2005, Chest.

[19]  E. Silverman,et al.  The protease inhibitor PI*S allele and COPD: a meta-analysis , 2005, European Respiratory Journal.

[20]  J. Stoller,et al.  α1-antitrypsin deficiency , 2005, The Lancet.

[21]  B. Lisowska-Myjak AAT as a diagnostic tool. , 2005, Clinica chimica acta; international journal of clinical chemistry.

[22]  A. Dirksen,et al.  American Thoracic Society/European Respiratory Society: Standards in Diagnostik und Therapie bei Patienten mit Alpha-1-Antitrypsin-Mangel , 2005 .

[23]  D. Lomas,et al.  α1-Antitrypsin deficiency • 4: Molecular pathophysiology , 2004, Thorax.

[24]  R. Stockley,et al.  α1-Antitrypsin deficiency • 3: Clinical manifestations and natural history , 2004, Thorax.

[25]  E. Silverman,et al.  α1-Antitrypsin deficiency · 2: Genetic aspects of α1-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk , 2004, Thorax.

[26]  N. Seersholm,et al.  α1-Antitrypsin deficiency · 1: Epidemiology of α1-antitrypsin deficiency , 2004, Thorax.

[27]  F. Serres Alpha-1 antitrypsin deficiency is not a rare disease but a disease that is rarely diagnosed. , 2003 .

[28]  I. Blanco,et al.  Genetic epidemiology of alpha‐1 antitrypsin deficiency in North America and Australia/New Zealand: Australia, Canada, New Zealand and the United States of America , 2003, Clinical genetics.

[29]  J. Croffie,et al.  Serum Levels of α1-Antitrypsin Predict Phenotypic Expression of the α1-Antitrypsin Gene , 2003, Digestive Diseases and Sciences.

[30]  Morten Dahl,et al.  Change in Lung Function and Morbidity from Chronic Obstructive Pulmonary Disease in 1-Antitrypsin MZ Heterozygotes: A Longitudinal Study of the General Population , 2002, Annals of Internal Medicine.

[31]  T. Thelin,et al.  A future for neonatal α1-antitrypsin screening?* , 2000 .

[32]  R. Stockley,et al.  Evidence for excessive bronchial inflammation during an acute exacerbation of chronic obstructive pulmonary disease in patients with alpha(1)-antitrypsin deficiency (PiZ). , 1999, American journal of respiratory and critical care medicine.

[33]  G. Schmitz,et al.  High-speed detection of the two common alpha(1)-antitrypsin deficiency alleles Pi*Z and Pi*S by real-time fluorescence PCR and melting curves. , 1999, Clinical chemistry.

[34]  P. Paré,et al.  α1-Antitrypsin Genotypes and the Acute-phase Response to Open Heart Surgery , 1999 .

[35]  J. Croffie,et al.  Serum levels of alpha-1 antitrypsin predict phenotypic expression of the alpha-1 antitrypsin gene in the pediatric population , 1998 .

[36]  M. Schluchter,et al.  Clinical features of individuals with PI*SZ phenotype of alpha 1-antitrypsin deficiency. alpha 1-Antitrypsin Deficiency Registry Study Group. , 1996, American journal of respiratory and critical care medicine.

[37]  W. Poller,et al.  Identification and DNA sequence analysis of 15 new alpha 1-antitrypsin variants, including two PI*Q0 alleles and one deficient PI*M allele. , 1994, American journal of human genetics.

[38]  P. Righetti,et al.  Isoelectric focusing in immobilized pH gradients: applications in clinical chemistry and forensic analysis. , 1991, Journal of chromatography.

[39]  R. Crystal,et al.  Use of a Highly Purified α1-Antitrypsin Standard to Establish Ranges for the Common Normal and Deficient α1-Antitrypsin Phenotypes , 1991 .

[40]  E. Silverman,et al.  Alpha-1-antitrypsin deficiency. High prevalence in the St. Louis area determined by direct population screening. , 1989, The American review of respiratory disease.

[41]  N. Milman,et al.  Acute phase reactants in the elderly. , 1988, Clinica chimica acta; international journal of clinical chemistry.

[42]  R. Crystal,et al.  Z-type alpha 1-antitrypsin is less competent than M1-type alpha 1-antitrypsin as an inhibitor of neutrophil elastase. , 1987, The Journal of clinical investigation.

[43]  S. Eriksson,et al.  Effects of smoking and intermediate alpha 1-antitrypsin deficiency (PiMZ) on lung function. , 1985, European journal of respiratory diseases.

[44]  R. Carrell,et al.  SMOKING, LUNG FUNCTION, AND α1-ANTITRYPSIN DEFICIENCY , 1985, The Lancet.

[45]  P. Auconi,et al.  Alpha 1-antitrypsin PiM subtypes and chronic obstructive pulmonary disease (COPD) , 1982, Chest.

[46]  W. Bamlet,et al.  Alpha 1-Antitrypsin Deficiency Carriers , Tobacco Smoke , Chronic Obstructive Pulmonary Disease , and Lung Cancer Risk , 2008 .

[47]  S. Thibodeau,et al.  Diagnosis of alpha-1-antitrypsin deficiency: An algorithm of quantification, genotyping, and phenotyping. , 2006, Clinical chemistry.

[48]  D. Lomas,et al.  Alpha1-antitrypsin deficiency. 4: Molecular pathophysiology. , 2004, Thorax.

[49]  G. Palomaki,et al.  Reference distributions for the positive acute phase proteins, α1‐acid glycoprotein (orosomucoid), α1‐antitrypsin, and haptoglobin: A comparison of a large cohort to the world’s literature , 2000, Journal of clinical laboratory analysis.

[50]  E. Janus,et al.  Kinetic Characterisation Of Alpha‐1‐Antitrypsin F As An Inhibitor Of Human Neutrophil Elastase , 1996, Pathology.

[51]  R. Crystal,et al.  Use of a highly purified alpha 1-antitrypsin standard to establish ranges for the common normal and deficient alpha 1-antitrypsin phenotypes. , 1991, Chest.

[52]  D. States,et al.  The alpha 1-antitrypsin gene and its mutations. Clinical consequences and strategies for therapy. , 1989, Chest.

[53]  R. Crystal The α1-antitrypsin gene and its deficiency states , 1989 .