Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon

[1]  J. Hermann,et al.  Halogens and noble gases in serpentinites and secondary peridotites: Implications for seawater subduction and the origin of mantle neon , 2018, Geochimica et Cosmochimica Acta.

[2]  H. Bureau,et al.  Low hydrogen contents in the cores of terrestrial planets , 2018, Science Advances.

[3]  M. Meier,et al.  Cosmogenic He and Ne in chondrules from clastic matrix and a lithic clast of Murchison: No pre-irradiation by the early sun , 2017 .

[4]  B. Hofmann,et al.  Protracted storage of CR chondrules in a region of the disk transparent to galactic cosmic rays , 2017 .

[5]  C. German,et al.  The deep distributions of helium isotopes, radiocarbon, and noble gases along the U.S. GEOTRACES East Pacific Zonal Transect (GP16) , 2017 .

[6]  M. Moreira,et al.  Solar wind implantation supplied light volatiles during the frst stage of Earth accretion , 2017 .

[7]  L. Baumgartner,et al.  Cosmic‐ray exposure ages of chondrules , 2016 .

[8]  S. Niedermann,et al.  He, Ne and Ar isotope signatures of mid-ocean ridge basalts and their implications for upper mantle structure: A case study from the Mid-Atlantic Ridge at 4–12°S , 2016 .

[9]  B. Marty,et al.  Chondritic xenon in the Earth’s mantle , 2016, Nature.

[10]  Luca Ricci,et al.  RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK , 2016, 1603.09352.

[11]  S. Charnoz,et al.  The origin of the neon isotopes in chondrites and on Earth , 2016 .

[12]  M. Moreira,et al.  Neon isotopic composition of the mantle constrained by single vesicle analyses , 2015 .

[13]  M. Trieloff,et al.  Early cosmic ray irradiation of chondrules and prolonged accretion of primitive meteorites , 2015 .

[14]  Seth Andrew Jacobson,et al.  Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water , 2014, 1410.3509.

[15]  M. Pető Application of noble gas isotopic systems to identify mantle heterogeneities , 2014 .

[16]  D. Burnett,et al.  Heavy noble gases in solar wind delivered by Genesis mission. , 2014, Geochimica et cosmochimica acta.

[17]  R. Wieler,et al.  Comment on “Cosmogenic neon in grains separated from individual chondrules: Evidence of precompaction exposure in chondrules” by J. P. Das, J. N. Goswami, O. V. Pravdivtseva, A. P. Meshik, and C. M. Hohenberg , 2013 .

[18]  M. Moreira Noble Gas Constraints on the Origin and Evolution of Earth’s Volatiles , 2013 .

[19]  Katherine A. Kelley,et al.  Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin , 2013 .

[20]  A. Halliday The origins of volatiles in the terrestrial planets , 2013 .

[21]  T. Pettke,et al.  Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites , 2013 .

[22]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[23]  B. Marty The origins and concentrations of water, carbon, nitrogen and noble gases on Earth , 2014, 1405.6336.

[24]  J. Standish,et al.  Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge , 2012 .

[25]  J. Schilling,et al.  The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle , 2012 .

[26]  R. Wiens,et al.  ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION , 2012 .

[27]  J. Goswami,et al.  Cosmogenic neon in grains separated from individual chondrules: Evidence of precompaction exposure in chondrules , 2012 .

[28]  M. Hirschmann,et al.  Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets , 2012 .

[29]  M. Hirschmann Magma ocean influence on early atmosphere mass and composition , 2012 .

[30]  S. Mukhopadhyay Early differentiation and volatile accretion recorded in deep-mantle neon and xenon , 2012, Nature.

[31]  M. Kendrick,et al.  High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction , 2011 .

[32]  R. Wieler,et al.  Cosmogenic helium and neon in individual chondrules from Allende and Murchison: Implications for the precompaction exposure history of chondrules , 2011 .

[33]  A. Pourmand,et al.  Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo , 2011, Nature.

[34]  M. Moreira,et al.  Rare gas systematics on Lucky Strike basalts (37°N, North Atlantic): Evidence for efficient homogenization in a long‐lived magma chamber system? , 2011 .

[35]  Tomoki Nakamura,et al.  Noble gases in enstatite chondrites released by stepped crushing and heating , 2010 .

[36]  S. Murty,et al.  Cosmogenic and trapped noble gases in individual chondrules: Clues to chondrule formation , 2009 .

[37]  M. Moreira,et al.  Atmospheric 38Ar/36Ar in the mantle: Implications for the nature of the terrestrial parent bodies , 2009 .

[38]  E. Mamajek Initial Conditions of Planet Formation: Lifetimes of Primordial Disks , 2009, 0906.5011.

[39]  S. Mukhopadhyay,et al.  New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook–Austral Islands , 2009 .

[40]  J. Strutt Scientific Papers: Theoretical Considerations respecting the Separation of Gases by Diffusion and Similar Processes , 2009 .

[41]  B. Meade,et al.  Spatial Variability of Erosion Rates Inferred from the Frequency Distribution of Cosmogenic 3He in Olivines from Hawaiian River Sediments , 2008 .

[42]  U. Krähenbühl,et al.  Comparison of cosmic‐ray exposure ages and trapped noble gases in chondrule and matrix samples of ordinary, enstatite, and carbonaceous chondrites , 2007 .

[43]  K. Nishiizumi,et al.  Noble gas and oxygen isotope studies of aubrites: A clue to origin and histories , 2007 .

[44]  G. Holland,et al.  Seawater subduction controls the heavy noble gas composition of the mantle , 2006, Nature.

[45]  J. Woodhead,et al.  A primordial solar-neon enriched component in the source of EM-I-type ocean island basalts from the Pitcairn Seamounts, Polynesia , 2005 .

[46]  M. Moreira,et al.  Correlated helium, neon, and melt production on the super-fast spreading East Pacific Rise near 17°S , 2005 .

[47]  B. Marty,et al.  Neon isotopes constrain convection and volatile origin in the Earth's mantle , 2005, Nature.

[48]  B. Marty,et al.  A determination of the neon isotopic composition of the deep mantle: Earth and Planetary Science Let , 2004 .

[49]  T. Mccoy,et al.  History and origin of aubrites , 2003 .

[50]  Jean Besse,et al.  Three distinct types of hotspots in the Earth's mantle , 2002 .

[51]  M. Moreira,et al.  Rare gas systematics on Mid Atlantic Ridge (37–40°N) , 2002 .

[52]  P. Burnard,et al.  Production, Release and Transport of Noble Gases in the Continental Crust , 2002 .

[53]  K. Uto,et al.  Noble gas study of the Reunion hotspot: evidence for distinct less-degassed mantle sources , 2001 .

[54]  U. Krähenbühl,et al.  Precompaction exposure of chondrules and implications , 2001 .

[55]  D. Clague,et al.  The nature of pristine noble gases in mantle plumes , 2000, Science.

[56]  M. Moreira,et al.  Rare gas systematics on the southernmost Mid-Atlantic Ridge : Constraints on the lower mantle and the Dupal source , 2000 .

[57]  R. Wieler,et al.  Nucleogenic production of Ne isotopes in Earth's crust and upper mantle induced by alpha particles from the decay of U and Th , 1999 .

[58]  J. Schilling,et al.  Plume‐ridge interactions of the Discovery and Shona mantle plumes with the southern Mid‐Atlantic Ridge (40°‐55°S) , 1999 .

[59]  Tomoki Nakamura,et al.  Heterogeneous distribution of solar and cosmogenic noble gases in CM chondrites and implications for the formation of CM parent bodies , 1999 .

[60]  M. Moreira,et al.  Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle , 1998, Science.

[61]  C. Ballentine,et al.  Resolving the mantle He/Ne and crustal 21Ne/22Ne in well gases , 1997 .

[62]  T. Staudacher,et al.  Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii , 1997 .

[63]  M. Honda,et al.  Production of nucleogenic neon in the Earth from natural radioactive decay , 1997 .

[64]  S. Jacobsen,et al.  Noble Gases and Earth's Accretion , 1996, Science.

[65]  M. Moreira,et al.  Rare gas systematics in Red Sea Ridge basalts , 1996 .

[66]  T. Matsui,et al.  Partitioning of H and C between the mantle and core during the core formation in the Earth: Its implications for the atmospheric evolution and redox state of early mantle , 1996 .

[67]  M. Moreira,et al.  A primitive plume neon component in MORB: The Shona ridge-anomaly, South Atlantic (51–52°S) , 1995 .

[68]  B. M. Kennedy,et al.  Crustal neon: a striking uniformity , 1990 .

[69]  S. Sasaki,et al.  Did a primary solar-type atmosphere exist around the proto-earth? , 1990 .

[70]  T. Matsui,et al.  Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth , 1986, Nature.

[71]  R. Wieler,et al.  He, ne, and AR in Antarctic Meteorites: Solar Noble Gases in an Enstatite Chondrite , 1985 .

[72]  J. Wacker,et al.  Noble gas components in clasts and separates of the Abee meteorite , 1983 .

[73]  W. Rison,et al.  Systematics of rare gas isotopes in basic lavas and ultramafic xenoliths , 1982 .

[74]  C. Hayashi,et al.  Dissolution of the primordial rare gases into the molten Earth's material , 1980 .

[75]  D. Black On the origins of trapped helium, neon and argon isotopic variations in meteorites—II. Carbonaceous meteorites , 1972 .

[76]  D. Heymann,et al.  Noble gases in carbonaceous chondrites , 1970 .

[77]  L. Rayleigh,et al.  L. Theoretical considerations respecting the separation of gases by diffusion and similar processes , 1896 .