Geophysical Investigations of Habitability in Ice‐Covered Ocean Worlds

Geophysical measurements can reveal the structures and thermal states of icy ocean worlds. The interior density, temperature, sound speed, and electrical conductivity thus characterize their habitability. We explore the variability and correlation of these parameters using 1‐D internal structure models. We invoke thermodynamic consistency using available thermodynamics of aqueous MgSO4, NaCl (as seawater), and NH3; pure water ice phases I, II, III, V, and VI; silicates; and any metallic core that may be present. Model results suggest, for Europa, that combinations of geophysical parameters might be used to distinguish an oxidized ocean dominated by MgSO4 from a more reduced ocean dominated by NaCl. In contrast with Jupiter's icy ocean moons, Titan and Enceladus have low‐density rocky interiors, with minimal or no metallic core. The low‐density rocky core of Enceladus may comprise hydrated minerals or anhydrous minerals with high porosity. Cassini gravity data for Titan indicate a high tidal potential Love number (k2>0.6), which requires a dense internal ocean (ρocean>1,200 kg m−3) and icy lithosphere thinner than 100 km. In that case, Titan may have little or no high‐pressure ice, or a surprisingly deep water‐rock interface more than 500 km below the surface, covered only by ice VI. Ganymede's water‐rock interface is the deepest among known ocean worlds, at around 800 km. Its ocean may contain multiple phases of high‐pressure ice, which will become buoyant if the ocean is sufficiently salty. Callisto's interior structure may be intermediate to those of Titan and Europa, with a water‐rock interface 250 km below the surface covered by ice V but not ice VI.

[1]  David P. O'Brien,et al.  A melt-through model for chaos formation on Europa , 2002 .

[2]  A. Rubin,et al.  Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes , 2016, Proceedings of the National Academy of Sciences.

[3]  S. Klotz,et al.  Phonon dispersion of bcc iron to 10 GPa. , 2000, Physical review letters.

[4]  R. Carlson The influence of porosity and crack morphology on seismic velocity and permeability in the upper oceanic crust , 2014 .

[5]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[6]  M. Zolotov,et al.  On the Chemical Composition of Europa's Icy Shell, Ocean, and Underlying Rocks , 2009 .

[7]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[8]  Y. Guéguen,et al.  High Vp/Vs ratio: Saturated cracks or anisotropy effects? , 2012 .

[9]  R. Pappalardo,et al.  Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory , 2009 .

[10]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[11]  D. Senske,et al.  Science Objectives and Capabilities of the NASA Europa Mission , 2016 .

[12]  A. R. Gregory,et al.  An experimental investigation of factors affecting elastic wave velocities in porous media , 1958 .

[13]  A. Trinh,et al.  On the librations and tides of large icy satellites , 2013 .

[14]  H. Kern,et al.  Laboratory seismic measurements: an aid in the interpretation of seismic field data , 1990 .

[15]  K. Hirose,et al.  The high conductivity of iron and thermal evolution of the Earth’s core , 2013 .

[16]  S. Vance Thermodynamics and Interior Structure Measurements of Ocean Worlds , 2015 .

[17]  H. Zebker,et al.  A rigid and weathered ice shell on Titan , 2013, Nature.

[18]  Jennifer M. Brown,et al.  Thermodynamic properties of aqueous MgSO 4 to 800 MPa at temperatures from 20 to 100 C and concentrations to 2.5 mol kg 1 from sound speeds, with applications to icy world oceans , 2013 .

[19]  J. E. Riedel,et al.  Improved detection of tides at Europa with radiometric and optical tracking during flybys , 2015 .

[20]  V. M. Shmonov,et al.  The porosity trend and pore sizes of the rocks in the continental crust of the earth: Evidence from experimental data on permeability , 2014, Izvestiya, Physics of the Solid Earth.

[21]  C. Sotin,et al.  Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan , 2010 .

[22]  Lapo Boschi,et al.  Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: Global thermochemical models , 2011 .

[23]  Tomoo Katsura,et al.  The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle , 2009 .

[24]  M. Mezouar,et al.  Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies , 2017 .

[25]  T. Reuschlé,et al.  Effect of pore and confining pressures on VP in thermally pre‐cracked granites , 2000 .

[26]  Koji Matsumoto,et al.  Tidal deformation of Ganymede: Sensitivity of Love numbers on the interior structure , 2016 .

[27]  G. Schubert,et al.  The tidal response of Ganymede and Callisto with and without liquid water oceans , 2003 .

[28]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[29]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[30]  E. Whalley,et al.  Pressure dependence of the elastic constants of ice Ih to 2.8 kbar by Brillouin spectroscopy , 1988 .

[31]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[32]  S. Ji,et al.  Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks , 2016 .

[33]  A. Diez Effects of cold glacier ice crystal anisotropy on seismic data , 2013 .

[34]  N A THORN,et al.  [Laboratory measurements]. , 1958, Meddelelser fra Sundhedsstyrelsen. Denmark. Sundhedsstyrelsen. Beredskabsafdelingen.

[35]  O. Müntener Serpentine and serpentinization: A link between planet formation and life , 2010 .

[36]  Stephen H. Kirby,et al.  Erratum: ``Creep of water ices at planetary conditions: A compilation'' , 1997 .

[37]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[38]  R. Pappalardo,et al.  Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes , 2010 .

[39]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[40]  J. D. Anderson,et al.  Gravitational constraints on the internal structure of Ganymede , 1996, Nature.

[41]  M. Arima,et al.  Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures , 2016 .

[42]  E. Chernysheva,et al.  Anomalies in the elastic properties of silicious iron single crystals at pressures of up to 9 GPa and the α−ɛ phase transformation , 1999 .

[43]  A. Barr,et al.  Formation of Ganymede's grooved terrain by convection-driven resurfacing , 2013 .

[44]  P. Grindrod,et al.  The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan , 2008 .

[45]  Mohamed Mezouar,et al.  Density measurements of liquid Fe‐S alloys at high‐pressure , 2000 .

[46]  T. McDougall,et al.  The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale , 2008 .

[47]  T. Nissen‐Meyer,et al.  Seismic Wave Propagation in Icy Ocean Worlds , 2017, 1705.03500.

[48]  Peter Grindrod,et al.  Ammonium sulfate on Titan: Possible origin and role in cryovolcanism , 2007 .

[49]  G. Collins,et al.  Enceladus' south polar sea , 2007 .

[50]  A. Walker,et al.  The gravity field , 2005 .

[51]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[52]  W. McKinnon On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto , 2006 .

[53]  Gabi Laske,et al.  The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure , 2013 .

[54]  J. Kargel,et al.  Magnesium Sulfate-Water to 400 MPa Using a Novel Piezometer: Densities, Phase Equilibria, and Planetological Implications , 1995 .

[55]  G. Schubert,et al.  The Gravity Field and Interior Structure of Callisto , 1999 .

[56]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[57]  H. Zebker,et al.  Shape, topography, gravity anomalies and tidal deformation of Titan , 2014 .

[58]  M. Choukroun,et al.  Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. , 2007, The Journal of chemical physics.

[59]  Robert T. Pappalardo,et al.  SCIENCE OF THE NASA EUROPA MISSION , 2016 .

[60]  David L. Goldsby,et al.  Superplastic deformation of ice: Experimental observations , 2001 .

[61]  G. Helffrich,et al.  Physical contradictions and remedies using simple polythermal equations of state , 2009 .

[62]  R. Lorenz,et al.  Expected Seismicity and the Seismic Noise Environment of Europa , 2017, 1705.03424.

[63]  Jürgen Oberst,et al.  Measuring tidal deformations by laser altimetry. A performance model for the Ganymede Laser Altimeter , 2015 .

[64]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[65]  J. Baross,et al.  The pH of Enceladus’ ocean , 2015, 1502.01946.

[66]  W. McKinnon,et al.  Forming Ganymede’s grooves at smaller strain: Toward a self-consistent local and global strain history for Ganymede , 2015 .

[67]  C. Sotin,et al.  Analytic theory of Titan’s Schumann resonance: Constraints on ionospheric conductivity and buried water ocean , 2012 .

[68]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[69]  J. Pearl,et al.  High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .

[70]  Michael T. Bland,et al.  The orbital–thermal evolution and global expansion of Ganymede , 2009 .

[71]  M. Beuthe Crustal control of dissipative ocean tides in Enceladus and other icy moons , 2016, 1608.08488.

[72]  P. Ulmer,et al.  Serpentine Stability to Mantle Depths and Subduction-Related Magmatism , 1995, Science.

[73]  Richard Greenberg,et al.  Acidification of Europa's subsurface ocean as a consequence of oxidant delivery. , 2012, Astrobiology.

[74]  S. Karato,et al.  Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite , 2005, Nature.

[75]  Christophe Sotin,et al.  Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice , 2014 .

[76]  H. Takeuchi,et al.  Seismic Surface Waves , 1972 .

[77]  K. Masuda,et al.  Elastic and viscoelastic properties of α iron at high temperatures , 1995 .

[78]  K. Hand,et al.  Geophysical controls of chemical disequilibria in Europa , 2016 .

[79]  Daniel G. Friend,et al.  A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water + Ammonia} , 1998 .

[80]  M. Ćuk,et al.  DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN’S MOONS , 2016, 1603.07071.

[81]  N. Christensen Chapter 32: Pore pressure, seismic velocities, and crustal structure , 1989 .

[82]  Francesca Bovolo,et al.  RIME: Radar for Icy Moon Exploration , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[83]  C. Sotin,et al.  Heat transport in the high-pressure ice mantle of large icy moons , 2017 .

[84]  F. Enzmann,et al.  Ion fractionation in young sea ice from Kongsfjorden, Svalbard , 2011, Annals of Glaciology.

[85]  T. Shankland,et al.  Laboratory‐based electrical conductivity in the Earth's mantle , 2000 .

[86]  C. Sotin,et al.  Two-phase convection in Ganymede’s high-pressure ice layer — Implications for its geological evolution , 2018 .

[87]  J. Hayes,et al.  The carbon cycle and associated redox processes through time , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[88]  I. Daniel,et al.  Influence of NaCl on ice VI and ice VII melting curves up to 6 GPa, implications for large icy moons , 2013 .

[89]  S. Karato,et al.  The role of hydrogen in the electrical conductivity of the upper mantle , 1990, Nature.

[90]  E. Shock,et al.  Quantitative habitability. , 2007, Astrobiology.

[91]  G. H. Shaw Elastic properties and equation of state of high pressure ice , 1986 .

[92]  Nikolas,et al.  Pore pressure , seismic velocities , and crustal structure , 2006 .

[93]  W. L. Marshall Reduced state relationship for limiting electrical conductances of aqueous ions over wide ranges of temperature and pressure , 1987 .

[94]  D. W. Parcher,et al.  The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data , 2006 .

[95]  W. McKinnon Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity , 2015 .

[96]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[97]  C. Sotin,et al.  Thermal convection in the outer shell of large icy satellites , 2001 .

[98]  S. Karato,et al.  The effect of water on the electrical conductivity of olivine , 2005, Nature.

[99]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[100]  T. Driesner,et al.  Thermodynamic properties of aqueous NaCl solutions to 1073 K and 4.5 GPa, and implications for dehydration reactions in subducting slabs , 2013 .

[101]  S. Kedar,et al.  Seismic Investigations of Europa and Other Ocean Worlds , 2016 .

[102]  P. Rosenblatt,et al.  Tidal constraints on the interior of Venus , 2015 .

[103]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[104]  M. E. Brown,et al.  SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA , 2013, 1303.0894.

[105]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[106]  Y. A. Kozlovsky The Superdeep Well of the Kola Peninsula , 1987 .

[107]  G. Tobie,et al.  Structure and dynamics of Titan’s outer icy shell constrained from Cassini data , 2014 .

[108]  K. P. Hand,et al.  Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell , 2007 .

[109]  J. Anderson,et al.  Shape, Mean Radius, Gravity Field, and Interior Structure of Callisto , 2001 .

[110]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[111]  S. Holmes,et al.  Global characteristics of porosity and density stratification within the lunar crust from GRAIL gravity and Lunar Orbiter Laser Altimeter topography data , 2014 .

[112]  E. Whalley,et al.  Acoustic velocities and densities of polycrystalline ice Ih, II, III, V, and VI by Brillouin spectroscopy , 1990 .

[113]  Mathieu Choukroun,et al.  Phase Behaviour of Ices and Hydrates , 2010 .

[114]  D. Blankenship,et al.  Radar signal propagation through the ionosphere of Europa , 2015 .

[115]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[116]  David E. Smith,et al.  Simulated recovery of Europa's global shape and tidal Love numbers from altimetry and radio tracking during a dedicated flyby tour , 2015 .

[117]  T. Yoshino,et al.  Electrical conductivity of mantle clinopyroxene as a function of water content and its implication on electrical structure of uppermost mantle , 2016 .

[118]  M. Choukroun,et al.  Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics. , 2010, The Journal of chemical physics.

[119]  Christian Vogt,et al.  Speed of sound in bubble-free ice. , 2008, The Journal of the Acoustical Society of America.

[120]  B. Romanowicz,et al.  Long‐period seismology on Europa: 1. Physically consistent interior models , 2006 .

[121]  V. Lainey,et al.  The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model , 2011 .

[122]  R. A. Jacobson,et al.  Europa's differentiated internal structure: inferences from four Galileo encounters. , 1997, Science.

[123]  G. Simmons,et al.  Effect of pore pressure on the velocity of compressional waves in low‐porosity rocks , 1972 .

[124]  F. Poulet,et al.  VLT/SINFONI OBSERVATIONS OF EUROPA: NEW INSIGHTS INTO THE SURFACE COMPOSITION , 2016 .

[125]  N. Christensen,et al.  High pore pressures and porosity at 35 km depth in the Cascadia subduction zone , 2011 .

[126]  W. Seyfried,et al.  Nanoscale constraints on porosity generation and fluid flow during serpentinization , 2016 .

[127]  Shunichi Kamata,et al.  Tidal resonance in icy satellites with subsurface oceans , 2015 .

[128]  R. Lorenz,et al.  Vital Signs: Seismology of ocean worlds , 2016, 1610.10067.

[129]  P. Thomas Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission , 2010 .

[130]  O. Andersson,et al.  Thermal conductivity of crystalline and amorphous ices and its implications on amorphization and glassy water. , 2005, Physical chemistry chemical physics : PCCP.

[131]  B. Shi,et al.  河口干潟の侵食降着サイクルにおける風の役割【Powered by NICT】 , 2017 .

[132]  T. Scambos,et al.  Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations , 1998, Nature.

[133]  G. Glatzmaier,et al.  Tidal heating in icy satellite oceans , 2014 .

[134]  C. Manning,et al.  Pressure-induced ion pairing in MgSO4 solutions: Implications for the oceans of icy worlds , 2017 .

[135]  M. Saito SOME PROBLEMS OF STATIC DEFORMATION OF THE EARTH , 1974 .

[136]  MgCl 6.5E OCEANIC COMPOSITION ON EUROPA : CONSTRAINTS FROM MINERAL SOLUBILITIES , 2008 .

[137]  David J. Stevenson,et al.  Nonhydrostatic effects and the determination of icy satellites' moment of inertia , 2013, 1309.1205.

[138]  Christopher F Chyba,et al.  Energy, chemical disequilibrium, and geological constraints on Europa. , 2007, Astrobiology.