Theoretical model atmosphere spectra used for the calibration of infrared instruments

Context. One of the key ingredients in establishing the relation between input signal and output flux from a spectrometer is accurate determination of the spectrophotometric calibration. In the case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the accuracy of the set of reference spectral energy distributions (SEDs) that the spectrophotometric calibration is built on. Aims. In this paper, we deal with the spectrophotometric calibration of infrared (IR) spectrometers onboard satellites in the 2 to 200 µm wavelength range. We aim at comparing the different reference SEDs used for the IR spectrophotometric calibration. The emphasis is on the reference SEDs of stellar standards with spectral type later than A0, with special focus on the theoretical model atmosphere spectra. Methods. Using the MARCS model atmosphere code, spectral reference SEDs were constructed for a set of IR stellar standards (A dwarfs, solar analogs, G9-M0 giants). A detailed error analysis was performed to estimate proper uncertainties on the predicted flux values. Results. It is shown that the uncertainty on the predicted fluxes can be as high as 10%, but in case high-resolution observational optical or near-IR data are available, and IR excess can be excluded, the uncertainty on medium-resolution SEDs can be reduced to 1–2% in the near-IR, to ∼3% in the mid-IR, and to ∼5% in the far-IR. Moreover, it is argued that theoretical stellar atmosphere spectra are at the moment the best representations for the IR fluxes of cool stellar standards. Conclusions. When aiming at a determination of the spectrophotometric calibration of IR spectrometers better than 3%, effort should be put into constructing an appropriate set of stellar reference SEDs based on theoretical atmosphere spectra for some 15 standard stars with spectral types between A0 V and M0 III.

[1]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[2]  C. Sterken The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[3]  R. Bohlin HST Stellar Standards with 1% Accuracy in Absolute Flux , 2006, astro-ph/0608715.

[4]  Stephan D. Price,et al.  Spectral Irradiance Calibration in the Infrared. XVI. Improved Accuracy in the Infrared Spectra of the Secondary and Tertiary Standard Calibration Stars , 2006 .

[5]  C. Keller,et al.  Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and Their Isotopes , 2006, astro-ph/0606153.

[6]  S. Ridgway,et al.  Circumstellar material in the Vega inner system revealed by CHARA/FLUOR , 2006, astro-ph/0604260.

[7]  R. Tolchenov,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[8]  Takeshi Kuroda,et al.  Description and climatology of a new general circulation model of the Martian atmosphere , 2005 .

[9]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[10]  B. Aringer,et al.  Atmospheric dynamics in carbon-rich Miras : I. Model atmospheres and synthetic line profiles , 2005, astro-ph/0503652.

[11]  S. Price,et al.  Spectral Irradiance Calibration in the Infrared. XV. Absolute Calibration of Standard Stars by Experiments on the Midcourse Space Experiment , 2004 .

[12]  J. Cami,et al.  On the analysis of band 3 of the ISO-SWS calibration sources , 2004 .

[13]  C. Prieto,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[14]  J. Stauffer,et al.  Spectral Irradiance Calibration in the Infrared. XIII. “Supertemplates” and On-Orbit Calibrators for the SIRTF Infrared Array Camera , 2003, astro-ph/0304349.

[15]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars - III. Effects of frequency-dependent radiative transfer , 2003 .

[16]  C. Waelkens,et al.  ISO-SWS calibration and the accurate modelling of cool-star atmospheres ? IV. G9 to M2 stars ?? , 2002, astro-ph/0207653.

[17]  K. Eriksson,et al.  The 3 micron spectrum of R Doradus observed with the ISO-SWS , 2002, astro-ph/0202171.

[18]  P. Jensen,et al.  H2O in stellar atmospheres , 2001 .

[19]  T. Encrenaz,et al.  The 2.4– spectrum of Mars observed with the infrared space observatory , 2000 .

[20]  Belgium,et al.  ISO-SWS calibration and the accurate modelling of cool-star atmospheres - I. Method , 2000, astro-ph/0008316.

[21]  David R. Alexander,et al.  The NEXTGEN Model Atmosphere Grid. II. Spherically Symmetric Model Atmospheres for Giant Stars with Effective Temperatures between 3000 and 6800 K , 1999, astro-ph/9907194.

[22]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[23]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[24]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[25]  A. Goldman,et al.  Updated line parameters for OH X2II–X2II (ν′',ν′) Transitions , 1998 .

[26]  M. Kessler,et al.  Infrared standards for ISO - I. A new calibration of mid infrared photometry , 1998 .

[27]  Tennyson,et al.  The Spectrum of Hot Water: Rotational Transitions and Difference Bands in the (020), (100), and (001) Vibrational States , 1997, Journal of molecular spectroscopy.

[28]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[29]  Martin G. Cohen,et al.  Spectral Irradiance Calibration in the Infrared.VII.New Composite Spectra, Comparison with Model Atmospheres, and Far-Infrared Extrapolations , 1996 .

[30]  L. Metcalfe,et al.  Spectral Irradiance Calibration in the Infrared. VI. 3-35 micron Spectra of Three Southern Standard Stars , 1996 .

[31]  Jesse D. Bregman,et al.  Spectral Irradiance Calibration in the Infrared.IV. 1.2-35 micron spectra of six standard stars , 1995 .

[32]  Saul J. Adelman,et al.  VEGA : A RAPIDLY ROTATING POLE-ON STAR , 1994 .

[33]  S. Saar,et al.  Carbon Monoxide Fundamental Bands in Late-Type Stars. III. Chromosphere or CO-mosphere? , 1994 .

[34]  D. Goorvitch,et al.  Calculation of (12)C(16)O and (13)C(16)O X(1)Sigma(+) rovibrational intensities for v less than or equal to 20 and J less than or equal to 150 , 1994 .

[35]  Matthew Joseph Griffin,et al.  The near-millimeter brightness temperature spectra of Uranus and Neptune , 1993 .

[36]  S. Langhoff,et al.  A theoretical study of the electric dipole moment function of SiO , 1993 .

[37]  Martin G. Cohen,et al.  Spectral irradiance calibration in the infrared. II - Alpha Tau and the recalibration of the IRAS low resolution spectrometer , 1992 .

[38]  Michael J. Barlow,et al.  Spectral irradiance calibration in the infrared. I - Ground-based and IRAS broadband calibrations , 1992 .

[39]  C. Engelke Analytic approximations to the 2-60 microns infrared continua for standard calibration stars - With application to the calibration of spectroscopy and photometry, and the determination of effective temperature and angular size from IR measurements , 1992 .

[40]  K. Volk,et al.  On the calibration of the IRAS low-resolution spectra , 1989 .

[41]  D. Muhleman,et al.  Mars: VLA observations of the Northern Hemisphere and the north polar region at wavelengths of 2 and 6 cm , 1987 .

[42]  K. Berrington,et al.  Free-free absorption coefficient of the negative hydrogen ion , 1987 .

[43]  G. Rieke,et al.  An absolute photometric system at 10 and 20 microns , 1985 .

[44]  H. Aumann,et al.  Early Results from the Infrared Astronomical Satellite , 1984, Science.

[45]  T. Ayres,et al.  Fourier Transform Spectrometer observations of solar carbon monoxide. I - The fundamental and first overtone bands in the quiet sun , 1981 .

[46]  J. Linsky,et al.  Stellar model chromospheres. III - Arcturus /K2 III/ , 1975 .

[47]  Alyson G. Wilson The dusty and molecular universe: a prelude to Herschel and ALMA , 2005 .

[48]  A. Karimi,et al.  Master‟s thesis , 2011 .

[49]  Martin F. Kessler,et al.  The calibration legacy of the ISO Mission , 2003 .

[50]  Thomas Müller,et al.  Asteroids as calibration standards in the thermal infrared for space observatories , 2002 .

[51]  S. Atreya,et al.  Voyager 2 ultraviolet spectrometer solar occultations at neptune: photochemical modeling of the 125–;165 nm lightcurves , 1998 .

[52]  F. Kupka,et al.  The Vienna Atomic Line Database: Present State and Future Development , 1997 .

[53]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[54]  Å. Nordlund Iterative solution of radiative transfer problems with spherical symmetry using a single-ray approximation. , 1984 .

[55]  J. Callaway,et al.  Free-Free Absorption Coefficient of the Negative Hydrogen Ion. , 1970 .