Automated Deduction and Proof Certification for the B Method. (Déduction Automatique et Certification de Preuve pour la Méthode B)
暂无分享,去创建一个
[1] Hendrik Pieter Barendregt,et al. Autarkic Computations in Formal Proofs , 2002, Journal of Automated Reasoning.
[2] Pierre Halmagrand,et al. Implementing Polymorphism in Zenon , 2015, IWIL@LPAR.
[3] Rajeev Goré,et al. Tableau Methods for Modal and Temporal Logics , 1999 .
[4] Damien Doligez,et al. Automated Deduction in the B Set Theory using Typed Proof Search and Deduction Modulo , 2015, LPAR.
[5] Gilles Dowek,et al. Dedukti : a Logical Framework based on the λ Π-Calculus Modulo Theory , 2016 .
[6] Guillaume Burel,et al. Translating HOL to Dedukti , 2015, PxTP@CADE.
[7] Andrei Paskevich,et al. TFF1: The TPTP Typed First-Order Form with Rank-1 Polymorphism , 2013, CADE.
[8] Guillaume Burel,et al. CoqInE: Translating the Calculus of Inductive Constructions into the λΠ-calculus Modulo , 2012, PxTP.
[9] Paul Benoit,et al. Météor: A Successful Application of B in a Large Project , 1999, World Congress on Formal Methods.
[10] Gilles Dowek,et al. Cut elimination for Zermelo set theory , 2023, ArXiv.
[11] Guillaume Burel,et al. A Shallow Embedding of Resolution and Superposition Proofs into the λΠ-Calculus Modulo , 2013, PxTP@CADE.
[12] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[13] François Bobot,et al. Why3: Shepherd Your Herd of Provers , 2011 .
[14] David Delahaye,et al. Tableaux Modulo Theories Using Superdeduction , 2015, ArXiv.
[15] Simon Cruanes,et al. Extending Superposition with Integer Arithmetic, Structural Induction, and Beyond. (Extensions de la Superposition pour l'Arithmétique Linéaire Entière, l'Induction Structurelle, et bien plus encore) , 2015 .
[16] Daniel Wand,et al. Polymorphic+Typeclass Superposition , 2014, PAAR@IJCAR.
[17] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure , 2017, Journal of Automated Reasoning.
[18] Andrei Popescu,et al. Encoding Monomorphic and Polymorphic Types , 2013, TACAS.
[19] Pierre Halmagrand. Soundly Proving B Method Formulæ Using Typed Sequent Calculus , 2016, ICTAC.
[20] Claude Marché,et al. The BWare Project: Building a Proof Platform for the Automated Verification of B Proof Obligations , 2014, ABZ.
[21] Christoph Weidenbach,et al. SPASS: Combining Superposition, Sorts and Splitting , 2000 .
[22] Richard Statman,et al. Lambda Calculus with Types , 2013, Perspectives in logic.
[23] Evert W. Beth,et al. Semantic Entailment And Formal Derivability , 1955 .
[24] Guillaume Burel. Experimenting with Deduction Modulo , 2011, CADE.
[25] Damien Doligez,et al. Proof Certification in Zenon Modulo: When Achilles Uses Deduction Modulo to Outrun the Tortoise with Shorter Steps , 2013 .
[26] Damien Doligez,et al. Zenon Modulo: When Achilles Outruns the Tortoise Using Deduction Modulo , 2013, LPAR.
[27] C. Favre,et al. Fly-by-wire for commercial aircraft: the Airbus experience , 1994 .
[28] Christopher Strachey,et al. Fundamental Concepts in Programming Languages , 2000, High. Order Symb. Comput..
[29] Martin Giese,et al. Hilbert's epsilon-Terms in Automated Theorem Proving , 1999, TABLEAUX.
[30] Ronan Saillard,et al. Typechecking in the lambda-Pi-Calculus Modulo : Theory and Practice. (Vérification de typage pour le lambda-Pi-Calcul Modulo : théorie et pratique) , 2015 .
[31] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[32] Jean-Raymond Abrial,et al. The B-book - assigning programs to meanings , 1996 .
[33] Sascha Böhme,et al. Semi-intelligible Isar Proofs from Machine-Generated Proofs , 2015, Journal of Automated Reasoning.
[34] Pierre Halmagrand,et al. Checking Zenon Modulo Proofs in Dedukti , 2015, PxTP@CADE.
[35] Pierre Castéran,et al. Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.
[36] Claude Kirchner,et al. Principles of Superdeduction , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).
[37] Geoff Sutcliffe. The CADE ATP System Competition - CASC , 2016, AI Mag..
[38] David Delahaye,et al. Integrating Simplex with Tableaux , 2015, TABLEAUX.