Superconducting microstrip resonator for pulsed ESR of thin films.

This article describes a superconducting microstrip resonator operating at 9.5 GHz (X-band) that is specially designed for pulsed ESR on thin films. A novel configuration consisting of an array of half-wave length microstrip transmission lines generates a uniform magnetic field over a 2-D region of 100×1000 μm(2) with field homogeneity better than 5×10(-2). Using the device, we demonstrate strong coupling of the resonator to an electron spin ensemble and pulsed ESR on Si:P.

[1]  S. Filipp,et al.  Dressed collective qubit states and the Tavis-Cummings model in circuit QED. , 2008, Physical review letters.

[2]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[3]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[4]  Jacob M. Taylor,et al.  Distributed Quantum Computation Based-on Small Quantum Registers , 2007, 0709.4539.

[5]  D. Suter,et al.  Planar microresonators for EPR experiments. , 2005, Journal of magnetic resonance.

[6]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[7]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[8]  J. Cole,et al.  Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator , 2011 .

[9]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[10]  D I Hoult,et al.  The quantum origins of the free induction decay signal and spin noise. , 2001, Journal of magnetic resonance.

[11]  David G Cory,et al.  Bandwidth-limited control and ringdown suppression in high-Q resonators. , 2012, Journal of magnetic resonance.

[12]  David G. Cory,et al.  A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .

[13]  E. A. Gere,et al.  Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects , 1959 .

[14]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[15]  J. Castaǹer,et al.  Inert carbon free radicals. I. Perchlorodiphenylmethyl and perchlorotriphenylmethyl radical series , 1971 .

[16]  F. Arams,et al.  SUPERCONDUCTING MICROSTRIP HIGH-Q MICROWAVE RESONATORS. , 1971 .

[17]  W. Froncisz,et al.  Relative Benefits of Overcoupled Resonators vs Inherently Low-Q Resonators for Pulsed Magnetic Resonance , 1994 .

[18]  D G Cory,et al.  Parallel information transfer in a multinode quantum information processor. , 2012, Physical review letters.

[19]  T. Duty Towards superconductor-spin ensemble hybrid quantum systems , 2010 .

[20]  G. Neue,et al.  A 2D-NMR method to study near-surface regions of conductors , 1990 .

[21]  D. Suter,et al.  Scaling of sensitivity and efficiency in planar microresonators for electron spin resonance. , 2008, The Review of scientific instruments.

[22]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[23]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Gunnar Jeschke,et al.  Principles of pulse electron paramagnetic resonance , 2001 .

[26]  Michael Mehring,et al.  Spin-bus concept of spin quantum computing , 2006 .

[27]  G. Feher,et al.  Polarization of Phosphorus Nuclei in Silicon , 1956 .