Impact of Classical Control Electronics on Qubit Fidelity

Quantum processors rely on classical electronic controllers to manipulate and read out the state of quantum bits (qubits). As the performance of the quantum processor improves, nonidealities in the classical controller can become the performance bottleneck for the whole quantum computer. To prevent such limitation, this paper presents a systematic study of the impact of the classical electrical signals on the qubit fidelity. All operations, i.e., single-qubit rotations, two-qubit gates, and readout, are considered, in the presence of errors in the control electronics, such as static, dynamic, systematic, and random errors. Although the presented study could be extended to any qubit technology, it currently focuses on single-electron spin qubits, because of several advantages, such as purely electrical control and long coherence times, and for their potential for large-scale integration. As a result of this study, detailed electrical specifications for the classical control electronics for a given qubit fidelity can be derived. We also discuss how qubit fidelity is affected by the limited performance of the general-purpose room-temperature equipment typically employed to control the few qubits available today. Ultimately, we show that tailor-made electronic controllers can achieve significantly lower power, cost, and size, as required to support the scaling up of quantum computers.

[1]  Mark A. Eriksson,et al.  Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet , 2016, Proceedings of the National Academy of Sciences.

[2]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[3]  K. K. Nambiar,et al.  Foundations of Computer Science , 2001, Lecture Notes in Computer Science.

[4]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[5]  L. M. K. Vandersypen,et al.  Efficient controlled-phase gate for single-spin qubits in quantum dots , 2010, 1010.0164.

[6]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[7]  Alan B. Grebene,et al.  Analog Integrated Circuit Design , 1978 .

[8]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[9]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[10]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[11]  Daniel Loss,et al.  Exchange-controlled single-electron-spin rotations in quantum dots , 2007 .

[12]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[13]  Saeed Fallahi,et al.  Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. , 2015, Physical review letters.

[14]  E. Kupce,et al.  Close Encounters between Soft Pulses , 1995 .

[15]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[16]  A. Gossard,et al.  Effect of exchange interaction on spin dephasing in a double quantum dot. , 2005, Physical review letters.

[17]  R Maurand,et al.  A CMOS silicon spin qubit , 2016, Nature Communications.

[18]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[19]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[20]  M. Biercuk,et al.  Arbitrary quantum control of qubits in the presence of universal noise , 2012, 1211.1163.

[21]  A. Gossard,et al.  Fast single-charge sensing with a rf quantum point contact , 2007, 0707.2946.

[22]  A. C. Gossard,et al.  Fast Sensing of Double-Dot Charge Arrangement and Spin State with a Radio-Frequency Sensor Quantum Dot , 2010, 1001.3585.

[23]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[24]  Edoardo Charbon,et al.  The electronic interface for quantum processors , 2018, Microprocess. Microsystems.

[25]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[26]  R. N. Schouten,et al.  Cryogenic amplifier for fast real-time detection of single-electron tunneling , 2007, 0708.0461.

[27]  Per Stenström,et al.  Proceedings of the ACM International Conference on Computing Frontiers , 2016, Conf. Computing Frontiers.

[28]  Michael J. Biercuk,et al.  The role of master clock stability in quantum information processing , 2016, npj Quantum Information.

[29]  J. P. Dehollain,et al.  Nanoscale broadband transmission lines for spin qubit control , 2012, Nanotechnology.

[30]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[31]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[32]  Gate Arrays CUSTOM INTEGRATED CIRCUITS CONFERENCE , 1985 .

[33]  I D Conway Lamb,et al.  An FPGA-based instrumentation platform for use at deep cryogenic temperatures. , 2015, The Review of scientific instruments.

[34]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[35]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[36]  W. G. van der Wiel,et al.  Coherent single electron spin control in a slanting Zeeman field. , 2005, Physical review letters.

[37]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[38]  Jan Craninckx,et al.  A 9.2–12.7 GHz Wideband Fractional-N Subsampling PLL in 28 nm CMOS With 280 fs RMS Jitter , 2015, IEEE Journal of Solid-State Circuits.

[39]  L. Childress,et al.  Supporting Online Material for , 2006 .

[40]  G Batey,et al.  A new ultra-low-temperature cryogen-free experimental platform , 2014 .

[41]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[42]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[43]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[44]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[45]  Lieven M.K. Vandersypen Experimental quantum computation with nuclear spins in liquid solution , 2001 .

[46]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[47]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[48]  Klaus Molmer,et al.  Fidelity of quantum operations , 2007 .

[49]  Steffen,et al.  Simultaneous soft pulses applied at nearby frequencies , 2000, Journal of magnetic resonance.

[50]  R. Feynman Simulating physics with computers , 1999 .

[51]  Lars R. Schreiber,et al.  Quantum computation: Silicon comes back. , 2014, Nature nanotechnology.

[52]  John Clarke,et al.  Pure Dephasing in Flux Qubits due to Flux Noise with Spectral Density Scaling as 1/f(alpha) , 2011, 1111.7272.

[53]  A. Houck,et al.  Direct digital synthesis of microwave waveforms for quantum computing , 2017, 1703.00942.

[54]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[55]  J. R. Petta,et al.  Scalable gate architecture for a one-dimensional array of semiconductor spin qubits , 2016, 1607.07025.

[56]  J. Verduijn Silicon Quantum Electronics , 2012 .

[57]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[58]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[59]  A. Dzurak,et al.  Gate-defined quantum dots in intrinsic silicon. , 2007, Nano letters.

[60]  Brian Donovan,et al.  Hardware for dynamic quantum computing. , 2017, The Review of scientific instruments.

[61]  Andrew S. Dzurak,et al.  Gate-based single-shot readout of spins in silicon , 2018, Nature Nanotechnology.

[62]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[63]  Tai-Haur Kuo,et al.  A 12-bit 40 nm DAC Achieving SFDR > 70 dB at 1.6 GS/s and IMD < –61dB at 2.8 GS/s With DEMDRZ Technique , 2014, IEEE Journal of Solid-State Circuits.

[64]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[65]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[66]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[67]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[68]  F K Wilhelm,et al.  Optimal control of a qubit coupled to a non-Markovian environment. , 2006, Physical review letters.

[69]  W. Marsden I and J , 2012 .

[70]  Todd Green,et al.  High-order noise filtering in nontrivial quantum logic gates. , 2011, Physical review letters.

[71]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[72]  X Qin,et al.  An integrated device with high performance multi-function generators and time-to-digital convertors. , 2017, The Review of scientific instruments.

[73]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[74]  Tai-Haur Kuo,et al.  A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection , 2012, IEEE Journal of Solid-State Circuits.

[75]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[76]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[77]  L. Tavian,et al.  LATEST DEVELOPMENTS IN CRYOGENICS AT CERN , 2005 .