A Brief Survey of Bandwidth Selection for Density Estimation

Abstract There has been major progress in recent years in data-based bandwidth selection for kernel density estimation. Some “second generation” methods, including plug-in and smoothed bootstrap techniques, have been developed that are far superior to well-known “first generation” methods, such as rules of thumb, least squares cross-validation, and biased cross-validation. We recommend a “solve-the-equation” plug-in bandwidth selector as being most reliable in terms of overall performance. This article is intended to provide easy accessibility to the main ideas for nonexperts.

[1]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[2]  P. Deheuvels Estimation non paramétrique de la densité par histogrammes généralisés , 1977 .

[3]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[4]  S. Sheather A data-based algorithm for choosing the window width when estimating the density at a point , 1983 .

[5]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[6]  D. W. Scott,et al.  Oversmoothed Nonparametric Density Estimates , 1985 .

[7]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[8]  J. Marron,et al.  Extent to which least-squares cross-validation minimises integrated square error in nonparametric density estimation , 1987 .

[9]  James Stephen Marron,et al.  On the Amount of Noise Inherent in Bandwidth Selection for a Kernel Density Estimator , 1987 .

[10]  D. W. Scott,et al.  Biased and Unbiased Cross-Validation in Density Estimation , 1987 .

[11]  James Stephen Marron,et al.  Estimation of integrated squared density derivatives , 1987 .

[12]  J. Marron Automatic smoothing parameter selection: A survey , 1988 .

[13]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[14]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[15]  Charles C. Taylor,et al.  Bootstrap choice of the smoothing parameter in kernel density estimation , 1989 .

[16]  B. Yandell Spline smoothing and nonparametric regression , 1989 .

[17]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[18]  J. Stephen Marron,et al.  Bootstrap bandwidth selection , 1990 .

[19]  W. Härdle Applied Nonparametric Regression , 1991 .

[20]  G. Wahba Spline models for observational data , 1990 .

[21]  G. Terrell The Maximal Smoothing Principle in Density Estimation , 1990 .

[22]  J. Faraway,et al.  Bootstrap choice of bandwidth for density estimation , 1990 .

[23]  James Stephen Marron,et al.  Local minima in cross validation functions , 1991 .

[24]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[25]  M. C. Jones,et al.  On optimal data-based bandwidth selection in kernel density estimation , 1991 .

[26]  Simon J. Sheather,et al.  Using non stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives , 1991 .

[27]  T. Gasser,et al.  A Flexible and Fast Method for Automatic Smoothing , 1991 .

[28]  James Stephen Marron,et al.  Lower bounds for bandwidth selection in density estimation , 1991 .

[29]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[30]  Shean-Tsong Chiu An automatic bandwidth selector for kernel density estimation , 1992 .

[31]  A. Pewsey Exploring the Limits of Bootstrap , 1994 .

[32]  J. Marron,et al.  Smoothed cross-validation , 1992 .

[33]  Terence J. O'Neill Error rates of non-Bayes classification rules and the robustness of Fisher's linear discriminant function , 1992 .

[34]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[35]  B. Turlach,et al.  Rejoinder to ``Practical performance of several data driven bandwidth selectors" , 1992 .

[36]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[37]  A. Cuevas,et al.  A comparative study of several smoothing methods in density estimation , 1994 .

[38]  James Stephen Marron,et al.  Asymptotically best bandwidth selectors in kernel density estimation , 1994 .

[39]  Bu. Park,et al.  Rejoinder to ``Practical performance of several data driven bandwidth selectors" , 1992 .

[40]  S. Weisberg,et al.  An Introduction to Regression Graphics , 1994 .

[41]  Loss and risk in smoothing parameter selection , 1994 .

[42]  Joachim Engel,et al.  An iterative bandwidth selector for kernel estimation of densities and their derivatives , 1994 .

[43]  Scale measures for bandwidth selection , 1995 .

[44]  James Stephen Marron,et al.  Visual Error Criteria for Qualitative Smoothing , 1995 .

[45]  A. Goldman An Introduction to Regression Graphics , 1995 .

[46]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[47]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[48]  J. Marron,et al.  Progress in data-based bandwidth selection for kernel density estimation , 1996 .