Turan numbers of extensions of some sparse hypergraphs via Lagrangians

Given a positive integer $n$ and an $r$-uniform hypergraph (or $r$-graph for short) $F$, the Turan number $ex(n,F)$ of $F$ is the maximum number of edges in an $r$-graph on $n$ vertices that does not contain $F$ as a subgraph. The extension $H^F $ of $F$ is obtained as follows: For each pair of vertices $v_i,v_j$ in $F$ not contained in an edge of $F$, we add a set $B_{ij}$ of $r-2$ new vertices and the edge $\{v_i,v_j\} \cup B_{ij}$, where the $B_{ij}$ 's are pairwise disjoint over all such pairs $\{i,j\}$. Let $K^r_p$ denote the complete $r$-graph on $p$ vertices. For all sufficiently large $n$, we determine the Turan numbers of the extensions of a $3$-uniform $t$-matching, a $3$-uniform linear star of size $t$, and a $4$-uniform linear star of size $t$, respectively. We also show that the unique extremal hypergraphs are balanced blowups of $K^3_{3t-1}, K^3_{2t}$, and $K^4_{3t}$, respectively. Our results generalize the recent result of Hefetz and Keevash [7].

[1]  Peter Keevash,et al.  A hypergraph Turán theorem via lagrangians of intersecting families , 2013, J. Comb. Theory, Ser. A.

[2]  Oleg Pikhurko An exact Turán result for the generalized triangle , 2008, Comb..

[3]  Zoltán Füredi,et al.  Extremal problems whose solutions are the blowups of the small witt-designs , 1989, J. Comb. Theory, Ser. A.

[4]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[5]  P. Frankl Extremal set systems , 1996 .

[6]  Peter Keevash Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .

[7]  Dhruv Mubayi,et al.  A hypergraph extension of Turán's theorem , 2006, J. Comb. Theory, Ser. B.

[8]  László Pyber,et al.  A new generalization of the Erdös-Ko-Rado theorem , 1986, J. Comb. Theory A.

[9]  Béla Bollobás,et al.  Three-graphs without two triples whose symmetric difference is contained in a third , 1974, Discret. Math..

[10]  A. F. Sidorenko,et al.  Asymptotic solution for a new class of forbiddenr-graphs , 1989, Comb..

[11]  John M. Talbot Lagrangians Of Hypergraphs , 2002, Comb. Probab. Comput..

[12]  Tao Jiang,et al.  Stability and Turán Numbers of a Class of Hypergraphs via Lagrangians , 2017, Comb. Probab. Comput..

[13]  Sergey Norin,et al.  Turán number of generalized triangles , 2017, J. Comb. Theory, Ser. A.

[14]  Vojtech Rödl,et al.  Hypergraphs do not jump , 1984, Comb..

[15]  Dhruv Mubayi,et al.  A new generalization of Mantel's theorem to k-graphs , 2007, J. Comb. Theory, Ser. B.

[16]  Oleg Pikhurko Exact computation of the hypergraph Turán function for expanded complete 2-graphs , 2013, J. Comb. Theory, Ser. B.

[17]  Sergey Norin,et al.  Tur\'an numbers of extensions , 2015 .

[18]  Zoltán Füredi,et al.  A new generalization of the Erdős-Ko-Rado theorem , 1983, Comb..