The Initial Decision Matrix (IDM) and Its Fundamental Role in Modelling a Scenario

This chapter is mainly devoted to a critical task: modelling a scenario. It addresses two main aspects: (a) Elements of the IDM (b) How to model a scenario

[1]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[2]  Y. De Smet,et al.  Rank reversal in the PROMETHEE II method: Some new results , 2008, 2008 IEEE International Conference on Industrial Engineering and Engineering Management.

[3]  Thomas L. Saaty,et al.  The legitimacy of rank reversal , 1984 .

[4]  Gordon B. Hazen,et al.  Erratum 2001 to "Sensitivity Analysis and the Expected Value of Perfect Information" Save Cancel , 2015 .

[5]  Valerie Belton,et al.  On a short-coming of Saaty's method of analytic hierarchies , 1983 .

[6]  Peter Nijkamp,et al.  Stochastic quantitative and qualitative multicriteria analysis for environmental design , 1977 .

[7]  Thomas L. Saaty,et al.  An essay on rank preservation and reversal , 2009, Math. Comput. Model..

[8]  N. Munier,et al.  Methodology to select a set of urban sustainability indicators to measure the state of the city, and performance assessment , 2011 .

[9]  Sajjad Zahir,et al.  A Comprehensive Literature Review of the Rank Reversal Phenomenon in the Analytic Hierarchy Process , 2013 .

[10]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[11]  Milan Zelany,et al.  A concept of compromise solutions and the method of the displaced ideal , 1974, Comput. Oper. Res..

[12]  Evangelos Triantaphyllou,et al.  Two new cases of rank reversals when the AHP and some of its additive variants are used that do not occur with the multiplicative AHP , 2001 .

[13]  L. V. Kantorovich,et al.  Mathematical Methods of Organizing and Planning Production , 1960 .

[14]  Raid Al-Aomar,et al.  A COMBINED AHP-ENTROPY METHOD FOR DERIVING SUBJECTIVE AND OBJECTIVE CRITERIA WEIGHTS , 2010 .

[15]  T. Saaty RANK GENERATION, PRESERVATION, AND REVERSAL IN THE ANALYTIC HIERARCHY DECISION PROCESS , 1987 .

[16]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[17]  Ying Luo,et al.  On rank reversal in decision analysis , 2009, Math. Comput. Model..

[18]  Jean-Charles Pomerol,et al.  Multicriterion Decision in Management: Principles and Practice , 2012 .

[19]  B. Jansen,et al.  Sensitivity analysis in linear programming: just be careful! , 1997 .

[20]  María Teresa Lamata,et al.  On rank reversal and TOPSIS method , 2012, Math. Comput. Model..

[21]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[22]  Panos M. Pardalos,et al.  Handbook of Multicriteria Analysis , 2010 .

[23]  Alireza Alinezhad,et al.  Sensitivity Analysis of TOPSIS Technique: The Results of Change in the Weight of One Attribute on the Final Ranking of Alternatives , 2011 .

[24]  Ying-Ming Wang,et al.  An approach to avoiding rank reversal in AHP , 2006, Decis. Support Syst..

[25]  Ching-Lai Hwang,et al.  Multiple Attribute Decision Making: Methods and Applications - A State-of-the-Art Survey , 1981, Lecture Notes in Economics and Mathematical Systems.

[26]  Yves De Smet,et al.  Some results about rank reversal instances in the PROMETHEE methods , 2013 .

[27]  Nolberto Munier,et al.  Programa de Doctorado en Diseño, Fabricación y Gestión de Proyectos Industriales PROCEDIMIENTO FUNDAMENTADO EN LA PROGRAMACIÓN LINEAL PARA LA SELECCIÓN DE ALTERNATIVAS EN PROYECTOS DE NATURALEZA COMPLEJA Y CON OBJETIVOS MÚLTIPLES , 2011 .