The Initial Decision Matrix (IDM) and Its Fundamental Role in Modelling a Scenario
暂无分享,去创建一个
Eloy Hontoria | Nolberto Munier | Fernando Jiménez-Sáez | N. Munier | Fernando Jiménez-Sáez | E. Hontoria
[1] Matthias Ehrgott,et al. Multiple criteria decision analysis: state of the art surveys , 2005 .
[2] Y. De Smet,et al. Rank reversal in the PROMETHEE II method: Some new results , 2008, 2008 IEEE International Conference on Industrial Engineering and Engineering Management.
[3] Thomas L. Saaty,et al. The legitimacy of rank reversal , 1984 .
[4] Gordon B. Hazen,et al. Erratum 2001 to "Sensitivity Analysis and the Expected Value of Perfect Information" Save Cancel , 2015 .
[5] Valerie Belton,et al. On a short-coming of Saaty's method of analytic hierarchies , 1983 .
[6] Peter Nijkamp,et al. Stochastic quantitative and qualitative multicriteria analysis for environmental design , 1977 .
[7] Thomas L. Saaty,et al. An essay on rank preservation and reversal , 2009, Math. Comput. Model..
[8] N. Munier,et al. Methodology to select a set of urban sustainability indicators to measure the state of the city, and performance assessment , 2011 .
[9] Sajjad Zahir,et al. A Comprehensive Literature Review of the Rank Reversal Phenomenon in the Analytic Hierarchy Process , 2013 .
[10] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[11] Milan Zelany,et al. A concept of compromise solutions and the method of the displaced ideal , 1974, Comput. Oper. Res..
[12] Evangelos Triantaphyllou,et al. Two new cases of rank reversals when the AHP and some of its additive variants are used that do not occur with the multiplicative AHP , 2001 .
[13] L. V. Kantorovich,et al. Mathematical Methods of Organizing and Planning Production , 1960 .
[14] Raid Al-Aomar,et al. A COMBINED AHP-ENTROPY METHOD FOR DERIVING SUBJECTIVE AND OBJECTIVE CRITERIA WEIGHTS , 2010 .
[15] T. Saaty. RANK GENERATION, PRESERVATION, AND REVERSAL IN THE ANALYTIC HIERARCHY DECISION PROCESS , 1987 .
[16] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[17] Ying Luo,et al. On rank reversal in decision analysis , 2009, Math. Comput. Model..
[18] Jean-Charles Pomerol,et al. Multicriterion Decision in Management: Principles and Practice , 2012 .
[19] B. Jansen,et al. Sensitivity analysis in linear programming: just be careful! , 1997 .
[20] María Teresa Lamata,et al. On rank reversal and TOPSIS method , 2012, Math. Comput. Model..
[21] C. Hwang. Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .
[22] Panos M. Pardalos,et al. Handbook of Multicriteria Analysis , 2010 .
[23] Alireza Alinezhad,et al. Sensitivity Analysis of TOPSIS Technique: The Results of Change in the Weight of One Attribute on the Final Ranking of Alternatives , 2011 .
[24] Ying-Ming Wang,et al. An approach to avoiding rank reversal in AHP , 2006, Decis. Support Syst..
[25] Ching-Lai Hwang,et al. Multiple Attribute Decision Making: Methods and Applications - A State-of-the-Art Survey , 1981, Lecture Notes in Economics and Mathematical Systems.
[26] Yves De Smet,et al. Some results about rank reversal instances in the PROMETHEE methods , 2013 .
[27] Nolberto Munier,et al. Programa de Doctorado en Diseño, Fabricación y Gestión de Proyectos Industriales PROCEDIMIENTO FUNDAMENTADO EN LA PROGRAMACIÓN LINEAL PARA LA SELECCIÓN DE ALTERNATIVAS EN PROYECTOS DE NATURALEZA COMPLEJA Y CON OBJETIVOS MÚLTIPLES , 2011 .