A primal formulation for the Helmholtz decomposition

In 1999, Jean-Paul Caltagirone and Jerome Breil have developed in their paper [Caltagirone, J. Breil, Sur une methode de projection vectorielle pour la resolution des equations de Navier-Stokes, C.R. Acad. Sci. Paris 327(Serie II b) (1999) 1179-1184] a new method to compute a divergence-free velocity. They have used the grad(div) operator to extract the solenoidal part of a given vector field. In this contribution we explain how this method can be considered as a real Helmholtz decomposition and we present a stable approximation in the framework of spectral methods. Numerical results are presented to illustrate the efficiency of this approach.

[1]  J. Rappaz,et al.  Finite element methods in linear ideal magnetohydrodynamics , 1985 .

[2]  Mejdi Azaïez,et al.  Staggered grids hybrid-dual spectral element method for second-order elliptic problems application to high-order time splitting methods for Navier-Stokes equations , 1998 .

[3]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[4]  F. Brezzi,et al.  On the convergence of eigenvalues for mixed formulations , 1997 .

[5]  Mejdi Azaïez,et al.  On a Stable Spectral Method for the grad(div) Eigenvalue Problem , 2006, J. Sci. Comput..

[6]  L. Ridgway Scott Handbook of Numerical Analysis, Volume II. Finite Element Methods (Part I) (P. G. Ciarlet and J. L. Lions, eds.) , 1994, SIAM Rev..

[7]  D. Boffi,et al.  A remark on spurious eigenvalues in a square , 1999 .

[8]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[9]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[10]  Daniele Boffi,et al.  Approximation of grad-div operator in non-convex domains , 1999 .

[11]  J. Caltagirone,et al.  Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes , 1999 .

[12]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[13]  Daniele Boffi,et al.  On the approximation of Maxwell''s eigenproblem in general 2D domains , 1999 .

[14]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[15]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .