Quantifying Silver Dissolution in Primary and Secondary AgO-Zn Batteries

[1]  Y. Jo,et al.  A Study on the Self-Discharge Behavior of Zinc-Air Batteries with CuO Additives , 2021, Applied Sciences.

[2]  Y. Meng,et al.  Investigating Degradation Modes in Zn‐AgO Aqueous Batteries with In Situ X‐Ray Micro Computed Tomography , 2021, Advanced Energy Materials.

[3]  Joseph Wang,et al.  High Performance Printed AgO-Zn Rechargeable Battery for Flexible Electronics , 2020, Joule.

[4]  P. Santhoshkumar,et al.  Improving self-discharge and anti-corrosion performance of Zn-air batteries using conductive polymer-coated Zn active materials , 2019, Journal of Industrial and Engineering Chemistry.

[5]  Dino Klotz Negative capacitance or inductive loop? – A general assessment of a common low frequency impedance feature , 2019, Electrochemistry Communications.

[6]  Soo-Jin Park,et al.  Stretchable Aqueous Batteries: Progress and Prospects , 2018, ACS Energy Letters.

[7]  Yunusov Khaydar Ergashovich,et al.  Bactericidal Hydrogel Based on Sodium-Carboxymethylcellulose Contained Silver Nanoparticles: Obtaining and Properties , 2018 .

[8]  Pu Chen,et al.  Surface Adsorption of Polyethylene Glycol to Suppress Dendrite Formation on Zinc Anodes in Rechargeable Aqueous Batteries , 2018, ChemElectroChem.

[9]  K. Ryu,et al.  Comparison of electrochemical performance for zinc anode via various electrolytes and conducting agents in Zn-air secondary batteries , 2017, Ionics.

[10]  M. G. Park,et al.  Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives , 2017, Advanced materials.

[11]  Abdelbast Guerfi,et al.  Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview , 2016 .

[12]  Daniel A. Steingart,et al.  Fabrication of a High‐Performance Flexible Silver–Zinc Wire Battery , 2016 .

[13]  Pan Xu,et al.  Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes , 2015, Nanomaterials.

[14]  D. Bock,et al.  In situ visualization of Li/Ag2VP2O8 batteries revealing rate-dependent discharge mechanism , 2015, Science.

[15]  Seung-wook Eom,et al.  Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density , 2013 .

[16]  D. Lützenkirchen-Hecht Anodic Silver Oxide (AgO) Layers by XPS , 2011 .

[17]  P. Bagus,et al.  Spectroscopic Evidence for Ag(III) in Highly Oxidized Silver Films by X-ray Photoelectron Spectroscopy , 2010 .

[18]  D. Lützenkirchen-Hecht,et al.  Anodic silver (II) oxides investigated by combined electrochemistry, ex situ XPS and in situ X‐ray absorption spectroscopy , 2009 .

[19]  D. Tudela Silver(II) Oxide or Silver(I,III) Oxide?. , 2008 .

[20]  J. Tominaga,et al.  Thermal decomposition of a thin AgOx layer generating optical near-field , 2004 .

[21]  Geoffrey I N Waterhouse,et al.  The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study , 2001 .

[22]  G. Xue,et al.  Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques , 1988 .

[23]  J. J. Lander,et al.  Zinc‐Silver Oxide Batteries , 1971 .

[24]  B. Miller Rotating Ring‐Disk Study of the Silver Electrode in Alkaline Solution , 1970 .

[25]  P. Rüetschi,et al.  Solubility and Stability of Silver Oxides in Alkaline Electrolytes , 1961 .

[26]  T. P. Dirkse,et al.  The Stability and Solubility of AgO in Alkaline Solutions , 1959 .