Chain conformation in ultrathin polymer films

Polymer thin films are used in a variety of technological applications—for example, as paints, lubricants and adhesives. Theories that predict the properties of molten polymers in confined geometries (as in a thin film) generally start from the premise that the chains maintain their unperturbed gaussian conformation in the direction parallel to the surface. This assumption has been questioned, however, by recent experiments. Here we use small-angle neutron scattering to characterize the chain structure and conformation in ultrathin (less than 100 nm) polymer films. The conformation can be deduced directly from the scattering from mixtures of protonated and perdeuterated polystyrenes. We find that the gaussian conformation is retained parallel to the surfaces in all cases. Chain sizes equal the bulk value, within experimental uncertainty, although there is a systematic trend towards chain swelling in the thinnest films.

[1]  Guenter Reiter,et al.  Dewetting as a Probe of Polymer Mobility in Thin Films , 1994 .

[2]  D. Theodorou Structure and thermodynamics of bulk homopolymer/solid interfaces: a site lattice model approach , 1988 .

[3]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[4]  Thomas P. Russell,et al.  The effect of finite film thickness on the surface segregation in symmetric binary polymer mixtures , 1993 .

[5]  Tseng,et al.  Molecular mobility in polymer thin films , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  James A. Forrest,et al.  Interface and chain confinement effects on the glass transition temperature of thin polymer films , 1997 .

[7]  D. Ho,et al.  Small-Angle Neutron Scattering Studies on Thin Films of Isotopic Polystyrene Blends , 1998 .

[8]  Ronald L. Jones,et al.  Chain Conformation in Ultrathin Polymer Films Using Small-Angle Neutron Scattering , 2001 .

[9]  Sáenz,et al.  Theory of conduction through narrow constrictions in a three-dimensional electron gas. , 1994, Physical review. B, Condensed matter.

[10]  Wen-li Wu,et al.  Reduced Polymer Mobility near the Polymer/Solid Interface as Measured by Neutron Reflectivity , 1999 .

[11]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .

[12]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[13]  Kevin G. Honnell,et al.  Composition dependence of the interaction parameter in isotopic polymer blends , 1994 .

[14]  T. P. Martin,et al.  Electronic shell structure of laser-warmed Na clusters , 1991 .

[15]  C. Hall,et al.  Square‐well chains: Bulk equation of state using perturbation theory and Monte Carlo simulations of the bulk pressure and of the density profiles near walls , 1991 .

[16]  K. Binder,et al.  Model calculations for wetting transitions in polymer mixtures , 1985 .

[17]  S. Reich,et al.  Phase separation of polymer blends in thin films , 1981 .

[18]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[19]  U. Landman,et al.  On Mesoscopic Forces and Quantized Conductance in Model Metallic Nanowires , 1997, cond-mat/9906018.

[20]  R. Caudano,et al.  High resolution electron energy loss spectroscopy investigation of molecular conformation at the surface of poly(amino acid)s films , 1994 .

[21]  J. Ruitenbeek,et al.  The signature of conductance quantization in metallic point contacts , 1995, Nature.

[22]  Bruce E. Eichinger,et al.  Shape distributions for Gaussian molecules: circular and linear chains as asymmetric ellipsoids , 1990 .

[23]  T. Russell,et al.  X-ray and neutron reflectivity for the investigation of polymers , 1990 .

[24]  P. Flory Principles of polymer chemistry , 1953 .

[25]  Pedersen,et al.  Mean-field quantization of several hundred electrons in sodium metal clusters. , 1990, Physical review letters.

[26]  T. P. Martin,et al.  Observation of quantum supershells in clusters of sodium atoms , 1991, Nature.

[27]  R. F. W. Pease,et al.  Structure in Thin and Ultrathin Spin-Cast Polymer Films , 1996, Science.

[28]  T. Pakula Computer simulation of polymers in thin layers. I, Polymer melt between neutral walls - static properties , 1991 .

[29]  D. Y. Yoon,et al.  Off-lattice Monte Carlo simulations of polymer melts confined between two plates. 2. Effects of chain length and plate separation , 1990 .

[30]  M. Devoret,et al.  Conductance quantization in metals: The influence of subband formation on the relative stability of specific contact diameters , 1997 .

[31]  C. Muller,et al.  Experimental observation of the transition from weak link to tunnel junction , 1992 .

[32]  Michael R. Philpott,et al.  Liquid polymer conformation on solid surfaces , 1989 .

[33]  P. Calvert When a thick film is thin , 1996, Nature.

[34]  O. H. Seeck,et al.  X-ray scattering from polymer films , 2000 .

[35]  I. Szleifer,et al.  MONTE CARLO SIMULATIONS OF CHAIN MOLECULES IN CONFINED ENVIRONMENTS , 1995 .

[36]  Rivillon,et al.  Chain segment order in polymer thin films on a nonadsorbing surface: A NMR study , 2000, Physical review letters.

[37]  Xiliang Zheng,et al.  Long-Range Effects on Polymer Diffusion Induced by a Bounding Interface , 1997 .

[38]  Ramanan Krishnamoorti,et al.  Small-angle neutron scattering by partially deuterated polymers and their blends , 1994 .

[39]  A. Silberberg Distribution of conformations and chain ends near the surface of a melt of linear flexible macromolecules , 1982 .

[40]  T. P. Martin,et al.  Observation of electronic shells and shells of atoms in large Na clusters , 1990 .

[41]  Pulak Dutta,et al.  Molecular Ordering in Thin Liquid Films of Polydimethylsiloxanes , 2001 .

[42]  Juan J. de Pablo,et al.  Scaling of Tg and reaction rate with film thickness in photoresist: A thermal probe study , 2000 .

[43]  Hugh R. Brown,et al.  Polymer Mobility In Thin Films , 1996 .

[44]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[45]  R. Balian,et al.  Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations , 1972 .

[46]  G. Breit,et al.  Nuclear Structure, Vol. 1 , 1970 .

[47]  G. Brinke,et al.  A lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces , 1993 .

[48]  Sauer,et al.  Wetting properties of thin liquid polyethylene propylene films. , 1993, Physical review letters.

[49]  T. Kuhlmann,et al.  Confinement effects on the chain conformation in thin polymer films , 2000 .

[50]  G. J. Fleer,et al.  Polymers at Interfaces , 1993 .

[51]  S. Satija,et al.  Small angle neutron scattering studies on ultrathin films , 1995 .

[52]  Wen-li Wu,et al.  Polymer chain relaxation: Surface outpaces bulk , 2001 .

[53]  G. Fredrickson,et al.  Distribution of chain ends at the surface of a polymer melt: Compensation effects and surface tension , 1995 .

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[55]  Energetics, forces, and quantized conductance in jellium-modeled metallic nanowires , 1998, cond-mat/9806107.

[56]  Vieira,et al.  Conductance steps and quantization in atomic-size contacts. , 1993, Physical review. B, Condensed matter.

[57]  Tisato Kajiyama,et al.  Aggregation structure of two-dimensional ultrathin polystyrene film prepared by the water casting method , 1993 .

[58]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[59]  Curtis W. Frank,et al.  Polymer chain organization and orientation in ultrathin films : A spectroscopic investigation , 1996 .

[60]  Georges Hadziioannou,et al.  Molecular dynamics simulations of the structure and dynamics of confined polymer melts , 1990 .