Mapping Patterns for Virtual Knowledge Graphs

Virtual Knowledge Graphs (VKG) constitute one of the most promising paradigms for integrating and accessing legacy data sources. A critical bottleneck in the integration process involves the definition, validation, and maintenance of mappings that link data sources to a domain ontology. To support the management of mappings throughout their entire lifecycle, we propose a comprehensive catalog of sophisticated mapping patterns that emerge when linking databases to ontologies. To do so, we build on well-established methodologies and patterns studied in data management, data analysis, and conceptual modeling. These are extended and refined through the analysis of concrete VKG benchmarks and real-world use cases, and considering the inherent impedance mismatch between data sources and ontologies. We validate our catalog on the considered VKG scenarios, showing that it covers the vast majority of patterns present therein.

[1]  Chen Chen,et al.  BigGorilla: An Open-Source Ecosystem for Data Preparation and Integration , 2018, IEEE Data Eng. Bull..

[2]  Diego Calvanese,et al.  Virtual Knowledge Graphs: An Overview of Systems and Use Cases , 2019, Data Intelligence.

[3]  Diego Calvanese,et al.  Reasoning on UML class diagrams , 2005, Artif. Intell..

[4]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[5]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[6]  Carsten Binnig,et al.  RODI: Benchmarking relational-to-ontology mapping generation quality , 2017, Semantic Web.

[7]  Avigdor Gal,et al.  Learning to Rerank Schema Matches , 2021, IEEE Transactions on Knowledge and Data Engineering.

[8]  Carsten Binnig,et al.  IncMap: pay as you go matching of relational schemata to OWL ontologies , 2013, OM.

[9]  Diego Calvanese,et al.  Beyond OWL 2 QL in OBDA: Rewritings and Approximations , 2015, AAAI.

[10]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language Primer (Second Edition) , 2012 .

[11]  Diego Calvanese,et al.  Unifying Class-Based Representation Formalisms , 2011, J. Artif. Intell. Res..

[12]  Avigdor Gal,et al.  ADnEV: Cross-Domain Schema Matching using Deep Similarity Matrix Adjustment and Evaluation , 2020, Proc. VLDB Endow..

[13]  Diego Calvanese,et al.  Linking Data to Ontologies , 2008, J. Data Semant..

[14]  Diego Calvanese,et al.  Ontop: Answering SPARQL queries over relational databases , 2016, Semantic Web.

[15]  Nikolas Mitrou,et al.  Bringing relational databases into the Semantic Web: A survey , 2012, Semantic Web.

[16]  Craig A. Knoblock,et al.  Karma: A System for Mapping Structured Sources into the Semantic Web , 2012, ESWC.

[17]  Erhard Rahm,et al.  COMA - A System for Flexible Combination of Schema Matching Approaches , 2002, VLDB.

[18]  Daniel P. Miranker,et al.  Ultrawrap Mapper: A Semi-Automatic Relational Database to RDF (RDB2RDF) Mapping Tool , 2015, International Semantic Web Conference.

[19]  Avigdor Gal,et al.  OntoBuilder: Fully Automatic Extraction and Consolidation of Ontologies from Web Sources , 2004, ICDE.

[20]  Erhard Rahm,et al.  Schema and ontology matching with COMA++ , 2005, SIGMOD '05.

[21]  Ian Horrocks,et al.  Making the most of your triple store: query answering in OWL 2 using an RL reasoner , 2013, WWW.

[22]  Diego Calvanese,et al.  VIG: Data scaling for OBDA benchmarks , 2019, Semantic Web.

[23]  Freddy Priyatna,et al.  Relational Database to RDF Mapping Patterns , 2012, WOP.

[24]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[25]  Avigdor Gal,et al.  Uncertain Schema Matching , 2011, Uncertain Schema Matching.

[26]  Ian Horrocks,et al.  BootOX: Practical Mapping of RDBs to OWL 2 , 2015, SEMWEB.

[27]  Christian Bizer,et al.  The Berlin SPARQL Benchmark , 2009, Int. J. Semantic Web Inf. Syst..

[28]  Emmanuel Pietriga,et al.  Alignment Cubes: Towards Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments , 2017, SEMWEB.

[29]  Diego Calvanese,et al.  The NPD Benchmark: Reality Check for OBDA Systems , 2015, EDBT.

[30]  Laura M. Haas,et al.  Clio: Schema Mapping Creation and Data Exchange , 2009, Conceptual Modeling: Foundations and Applications.

[31]  Phokion G. Kolaitis,et al.  Active Learning of GAV Schema Mappings , 2018, PODS.

[32]  Terry A. Halpin,et al.  Information Modelling and Relational Databases , 2001 .

[33]  Freddy Priyatna,et al.  MIRROR: Automatic R2RML Mapping Generation from Relational Databases , 2015, ICWE.

[34]  Evgeny Kharlamov,et al.  Ontology Based Data Access in Statoil , 2017, J. Web Semant..

[35]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[36]  Dimitris Kiritsis,et al.  DeepAlignment: Unsupervised Ontology Matching with Refined Word Vectors , 2018, NAACL.