Strong terahertz absorption in all-dielectric Huygens’ metasurfaces

We propose an all dielectric metamaterial that acts as a perfect terahertz absorber without a ground plane. The unit cell consists of a dielectric cylinder embedded in a low index material. In order to achieve near-perfect terahertz absorption (99.5%) we employ impedance matching of the electric and magnetic resonances within the cylinders of the Huygens' metasurface. The impedance matching is controlled by changing the aspect ratio between the height and diameter of the cylinder. We show that the absorption resonance can be tuned to particular frequencies from 0.3 to 1.9 THz via changing the geometry of the structure while keeping a nearly constant aspect ratio of the cylinders.

[1]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[2]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[3]  I. V. Semchenko,et al.  Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption , 2015, 1502.06916.

[4]  Robert R. Alfano,et al.  Terahertz Studies of the Dielectric Response and Second-Order Phonons in a GaSe Crystal , 2005 .

[5]  Zhi-Gang Yu,et al.  Perfect dielectric-metamaterial reflector , 2013 .

[6]  Qi-Ye Wen,et al.  Transmission line model and fields analysis of metamaterial absorber in the terahertz band. , 2009, Optics express.

[7]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[8]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[9]  Bing-zheng Xu,et al.  A novel structure for tunable terahertz absorber based on graphene. , 2013, Optics express.

[10]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[11]  T. Cui,et al.  A broadband terahertz absorber using multi-layer stacked bars , 2015 .

[12]  Dragoslav Grbovic,et al.  Metal-organic hybrid resonant terahertz absorbers with SU-8 photoresist dielectric layer , 2013 .

[13]  Brent M. Polishak,et al.  Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials , 2011 .

[14]  Yun-Sik Jin,et al.  Terahertz Dielectric Properties of Polymers , 2006 .

[15]  Derek Abbott,et al.  Plasmonic Resonance toward Terahertz Perfect Absorbers , 2014 .

[16]  W. Pan,et al.  Ultra-Broadband Terahertz Absorbers Based on 4 × 4 Cascaded Metal-Dielectric Pairs , 2014, Plasmonics.

[17]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[18]  Brian A. Slovick,et al.  Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector , 2014 .

[19]  Lei Zhou,et al.  Ultra-broadband terahertz metamaterial absorber , 2014 .

[20]  Lin Chen,et al.  A polarization-independent broadband terahertz absorber , 2014 .

[21]  Derek Abbott,et al.  Ultrabroadband Plasmonic Absorber for Terahertz Waves , 2015 .

[22]  Sergei A. Tretyakov,et al.  Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations , 2015 .

[23]  G. Karunasiri,et al.  Terahertz metamaterial absorbers with an embedded resistive layer , 2013 .

[24]  Ben-Xin Wang,et al.  Frequency tunable metamaterial absorber at deep-subwavelength scale , 2015 .

[25]  Y. Kivshar,et al.  Invited article: Broadband highly-efficient dielectric metadevices for polarization control , 2016 .

[26]  V. Svetlichnyi,et al.  Absorption anisotropy in sulfur doped gallium selenide crystals studied by THz-TDS , 2014 .

[27]  S. Tretyakov,et al.  A Bianisotropic Metasurface With Resonant Asymmetric Absorption , 2015, IEEE Transactions on Antennas and Propagation.