Graphene–Ionic Liquid Interfacial Potential Drop from Density Functional Theory-Based Molecular Dynamics Simulations

Ionic liquids (ILs) are promising electrolytes for electrochemical applications due to their remarkable stability and high charge density. Molecular dynamics simulations are essential for a better ...

[1]  Iuliia V. Voroshylova,et al.  On the role of the surface charge plane position at Au(hkl)–BMImPF6 interfaces , 2019, Electrochimica Acta.

[2]  Alexander D. MacKerell,et al.  Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields , 2019, Chemical reviews.

[3]  L. M. Varela,et al.  Molecular dynamics simulations of novel electrolytes based on mixtures of protic and aprotic ionic liquids at the electrochemical interface: Structure and capacitance of the electric double layer , 2019, Electrochimica Acta.

[4]  V. Ivaništšev,et al.  Simulation of a Solvate Ionic Liquid at a Polarizable Electrode with a Constant Potential , 2019, The Journal of Physical Chemistry C.

[5]  Maxim V. Fedorov,et al.  NaRIBaS - A Scripting Framework for Computational Modeling of Nanomaterials and Room Temperature Ionic Liquids in Bulk and Slab , 2018, Comput..

[6]  P. Miidla,et al.  Influence of porosity parameters and electrolyte chemical composition on the power densities of non-aqueous and ionic liquid based supercapacitors , 2018, Electrochimica Acta.

[7]  M. Salanne,et al.  Computer simulation studies of nanoporous carbon-based electrochemical capacitors , 2018, Current Opinion in Electrochemistry.

[8]  Jianwei Sun,et al.  Performance of SCAN density functional for a set of ionic liquid ion pairs , 2017, 1712.07904.

[9]  C. Bauschlicher,et al.  Decomposition of Ionic Liquids at Lithium Interfaces. 1. Ab Initio Molecular Dynamics Simulations , 2017 .

[10]  E. Lust,et al.  DFT study of ionic liquids adsorption on circumcoronene shaped graphene , 2017, 1711.09416.

[11]  O. Borodin,et al.  On the application of constant electrode potential simulation techniques in atomistic modelling of electric double layers , 2017 .

[12]  T. Romann,et al.  Characteristics of Capacitors Based on Ionic Liquids: From Dielectric Polymers to Redox-Active Adsorbed Species , 2016 .

[13]  Sheng Yang,et al.  New‐Generation Graphene from Electrochemical Approaches: Production and Applications , 2016, Advanced materials.

[14]  J. Lawson,et al.  Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers. , 2016, The Journal of chemical physics.

[15]  J. Mueller,et al.  Theoretical Studies on the Adsorption of 1-Butyl-3-methyl-imidazolium-hexafluorophosphate (BMI/PF$$_6$$6) on Au(100) Surfaces , 2016 .

[16]  K. Breitsprecher,et al.  Electrode Models for Ionic Liquid-Based Capacitors , 2015 .

[17]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[18]  T Kirchner,et al.  Restructuring of the electrical double layer in ionic liquids upon charging , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  N. Motta,et al.  High performance all-carbon thin film supercapacitors , 2015 .

[20]  A. Pak,et al.  On the influence of polarization effects in predicting the interfacial structure and capacitance of graphene-like electrodes in ionic liquids. , 2015, The Journal of chemical physics.

[21]  Maxim V. Fedorov,et al.  Poly(a)morphic portrait of the electrical double layer in ionic liquids , 2014 .

[22]  Y. Ando,et al.  Electrochemical reduction of an anion for ionic-liquid molecules on a lithium electrode studied by first-principles calculations , 2014 .

[23]  B. Laird,et al.  Evaluation of the constant potential method in simulating electric double-layer capacitors. , 2014, The Journal of chemical physics.

[24]  A. Kornyshev,et al.  Differential capacitance of ionic liquid interface with graphite: the story of two double layers , 2014, Journal of Solid State Electrochemistry.

[25]  David T. Limmer,et al.  The electric double layer has a life of its own , 2014, 1404.0343.

[26]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[27]  B. Wood,et al.  First-Principles-Inspired Design Strategies for Graphene-Based Supercapacitor Electrodes , 2014 .

[28]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[29]  P. Simon,et al.  Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces? , 2013, The journal of physical chemistry letters.

[30]  Michiel Sprik,et al.  Alignment of electronic energy levels at electrochemical interfaces. , 2012, Physical chemistry chemical physics : PCCP.

[31]  A. Seitsonen,et al.  Effect of dispersion on the structure and dynamics of the ionic liquid 1-ethyl-3-methylimidazolium thiocyanate. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  H. Matsumoto,et al.  First-Principles Study of EMIM-FAFSA Molecule Adsorption on a Li(100) Surface as a Model for Li-Ion Battery Electrodes , 2012 .

[33]  Mathieu Salanne,et al.  New Coarse-Grained Models of Imidazolium Ionic Liquids for Bulk and Interfacial Molecular Simulations , 2012 .

[34]  Stefan Grimme,et al.  Performance of dispersion-corrected density functional theory for the interactions in ionic liquids. , 2012, Physical chemistry chemical physics : PCCP.

[35]  M. Fedorov,et al.  Electrode screening by ionic liquids. , 2012, Physical chemistry chemical physics : PCCP.

[36]  Oleg Borodin,et al.  Molecular Dynamics Simulation Studies of the Structure of a Mixed Carbonate/LiPF6 Electrolyte near Graphite Surface as a Function of Electrode Potential , 2012 .

[37]  K. Kontturi,et al.  Nanostructured carbide-derived carbon synthesized by chlorination of tungsten carbide , 2011 .

[38]  Ji Won Suk,et al.  Interfacial capacitance of single layer graphene , 2011 .

[39]  David S Sholl,et al.  Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials. , 2010, Journal of chemical theory and computation.

[40]  Douglas R. MacFarlane,et al.  New Insights into the Relationship between Ion-Pair Binding Energy and Thermodynamic and Transport Properties of Ionic Liquids† , 2010 .

[41]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[42]  W. Hieringer,et al.  Toward ionic-liquid-based model catalysis: growth, orientation, conformation, and interaction mechanism of the [Tf2N]- anion in [BMIM][Tf2N] thin films on a well-ordered alumina surface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[43]  C. Stampfer,et al.  Quantum capacitance and density of states of graphene , 2010, 1001.4690.

[44]  H. Matsumoto,et al.  Ab initio study of EMIM-BF4 crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. , 2009, The Journal of chemical physics.

[45]  E. Birgin,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[46]  Pedro E. M. Lopes,et al.  Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications , 2009, Theoretical chemistry accounts.

[47]  Orlando Acevedo,et al.  Development of OPLS-AA Force Field Parameters for 68 Unique Ionic Liquids. , 2009, Journal of chemical theory and computation.

[48]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[49]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[50]  Maria Forsyth,et al.  Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. , 2007, Accounts of chemical research.

[51]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[52]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[53]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[54]  Joan Fuller,et al.  The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate : Electrochemical couples and physical properties , 1997 .

[55]  Michele Parrinello,et al.  A hybrid Gaussian and plane wave density functional scheme , 1997 .

[56]  H. Gerischer,et al.  Density of the electronic states of graphite: derivation from differential capacitance measurements , 1987 .

[57]  E. Lust,et al.  Electrical Double Layer Capacitors Based on Steam and CO2-Steam Co-Activated Carbon Electrodes and Ionic Liquid Electrolyte , 2019, Journal of The Electrochemical Society.

[58]  E. Lust,et al.  Electrochemical Investigation of 1-Ethyl-3-methylimidazolium Bromide and Tetrafluoroborate Mixture at Bi(111) Electrode Interface , 2016 .

[59]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[60]  A. Pak,et al.  A Computational Study of the Interfacial Structure and Capacitance of Graphene in [BMIM][PF6] Ionic Liquid , 2013 .