Stochastic Spatial Models

In the models we will consider, space is represented by a grid of sites that can be in one of a finite number of states and that change at rates that depend on the states of a finite number of sites. Our main aim here is to explain an idea of Durrett and Levin (1994): the behavior of these models can be predicted from the properties of the mean field ODE, i.e., the equations for the densities of the various types that result from pretending that all sites are always independent. We will illustrate this picture through a discussion of eight families of examples from statistical mechanics, genetics, population biology, epidemiology, and ecology. Some of our findings are only conjectures based on simulation, but in a number of cases we are able to prove results for systems with "fast stirring" by exploiting connections between the spatial model and an associated reaction diffusion equation.

[1]  Levin,et al.  Allelopathy in Spatially Distributed Populations , 1997, Journal of theoretical biology.

[2]  M. Kimura,et al.  'Stepping stone' model of population , 1953 .

[3]  M. Nowak,et al.  MORE SPATIAL GAMES , 1994 .

[4]  Kei-ichi Tainaka,et al.  Indirect effect in cyclic voter models , 1995 .

[5]  A. Sasaki,et al.  A Lattice Model for Population Biology , 1987 .

[6]  F. James Rohlf,et al.  An Investigation of the Isolation-By-Distance Model , 1971, The American Naturalist.

[7]  M. Gilpin Limit Cycles in Competition Communities , 1975, The American Naturalist.

[8]  Simon A. Levin,et al.  Stochastic Spatial Models: A User's Guide to Ecological Applications , 1994 .

[9]  Henley,et al.  Statics of a "self-organized" percolation model. , 1993, Physical review letters.

[10]  R. Whittaker Communities and Ecosystems , 1975 .

[11]  R. Lewontin Evolution and the theory of games. , 1961, Journal of theoretical biology.

[12]  Pablo A. Ferrari,et al.  Reaction-diffusion equations for interacting particle systems , 1986 .

[13]  J. Thoday,et al.  Abstracts of Papers read at the hundred and thirty-seventh meeting of the Society held on 10th and 11th November 1961, at University College, London , 1962, Heredity.

[14]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. May,et al.  Nonlinear Aspects of Competition Between Three Species , 1975 .

[16]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[17]  Geoffrey Grimmett,et al.  Exponential decay for subcritical contact and percolation processes , 1991 .

[18]  T. Williams,et al.  Stochastic Model for Abnormal Clone Spread through Epithelial Basal Layer , 1972, Nature.

[19]  B. Levin Frequency-dependent selection in bacterial populations. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[21]  Chris Noble Equilibrium Behavior of the Sexual Reproduction Process with Rapid Diffusion , 1992 .

[22]  R. Durrett Lecture notes on particle systems and percolation , 1988 .

[23]  Tomé,et al.  Stochastic lattice gas model for a predator-prey system. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[25]  Claudia Neuhauser,et al.  A long range sexual reproduction process , 1994 .

[26]  R. Durrett,et al.  Coexistence results for some competition models , 1997 .

[27]  Y. Iwasa,et al.  Population persistence and spatially limited social interaction. , 1995, Theoretical population biology.

[28]  P. Bak,et al.  A forest-fire model and some thoughts on turbulence , 1990 .

[29]  David Griffeath,et al.  Supercritical Contact Processes on $Z$ , 1983 .

[30]  Rick Durrett,et al.  Rescaled contact processes converge to super-Brownian motion in two or more dimensions , 1999 .

[31]  D. Pimentel,et al.  Space-Time Structure of the Environment and the Survival of Parasite-Host Systems , 1963, The American Naturalist.

[32]  S. Sawyer A limit theorem for patch sizes in a selectively-neutral migration model , 1979, Journal of Applied Probability.

[33]  Lawrence Gray,et al.  Critical Attractive Spin Systems , 1994 .

[34]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[35]  R. Redheffer,et al.  A theorem of La Salle-Lyapunov type for parabolic systems , 1988 .

[36]  Maury Bramson,et al.  Flux and Fixation in Cyclic Particle Systems , 1989 .

[37]  Denis Mollison,et al.  Spatial Contact Models for Ecological and Epidemic Spread , 1977 .

[38]  Kei-ichi Tainaka,et al.  Paradoxical effect in a three-candidate voter model , 1993 .

[39]  F. Smithies Linear Operators , 2019, Nature.

[40]  I. Hanski Metapopulation dynamics , 1998, Nature.

[41]  F. W. Preston The Canonical Distribution of Commonness and Rarity: Part I , 1962 .

[42]  R. Durrett Probability: Theory and Examples , 1993 .

[43]  F. Schlögl Chemical reaction models for non-equilibrium phase transitions , 1972 .

[44]  William G. Wilson,et al.  Mobility versus density-limited predator-prey dynamics on different spatial scales , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  R. Durrett,et al.  Coexistence results for catalysts , 1994 .

[46]  H. B. Wilson,et al.  Using spatio-temporal chaos and intermediate-scale determinism to quantify spatially extended ecosystems , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  P. Grassberger,et al.  Reggeon field theory (Schlögl's first model) on a lattice: Monte Carlo calculations of critical behaviour , 1979 .

[48]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[49]  Herbert W. Hethcote,et al.  Epidemic models: Their structure and relation to data , 1996 .

[50]  P. Clifford,et al.  A model for spatial conflict , 1973 .

[51]  R. Durrett,et al.  Spatial aspects of interspecific competition. , 1998, Theoretical population biology.

[52]  R. Dobrushin The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .

[53]  M. Longuet-Higgins On the Shannon-Weaver index of diversity, in relation to the distribution of species in bird censuses. , 1971, Theoretical population biology.

[54]  R. Lande,et al.  Population dynamic models generating the lognormal species abundance distribution. , 1996, Mathematical biosciences.

[55]  Mark Kot,et al.  Dispersal and Pattern Formation in a Discrete-Time Predator-Prey Model , 1995 .

[56]  Maury Bramson,et al.  On the Williams-Bjerknes Tumour Growth Model I , 1981 .

[57]  David Griffeath,et al.  Additive and Cancellative Interacting Particle Systems , 1979 .

[58]  Claudia Neuhauser,et al.  Particle Systems and Reaction-Diffusion Equations , 1994 .

[59]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[60]  D. Webb The statistics of relative abundance and diversity. , 1974, Journal of theoretical biology.

[61]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[62]  R. Holley,et al.  Free energy in a Markovian model of a lattice spin system , 1971 .

[63]  G. Mil’shtein,et al.  Interaction of Markov Processes , 1972 .

[64]  R. Hilborn,et al.  The effect of spatial heterogeneity on the persistence of predator-prey interactions. , 1975, Theoretical population biology.

[65]  J. T. Cox,et al.  A SPATIAL MODEL FOR THE ABUNDANCE OF SPECIES , 1998 .

[66]  T. Liggett Interacting Particle Systems , 1985 .

[67]  G. Nachman,et al.  Systems Analysis of Acarine Predator-Prey Interactions. I. A Stochastic Simulation Model of Spatial Processes , 1987 .

[68]  R. Holley Markovian Interaction Processes with Finite Range Interactions , 1972 .

[69]  M. Williamson,et al.  Relationship of species number to area, distance and other variables , 1988 .

[70]  M. Nowak,et al.  THE SPATIAL DILEMMAS OF EVOLUTION , 1993 .

[71]  R. May Patterns of species abundance and diversity , 1975 .

[72]  J. T. Cox,et al.  Hybrid zones and voter model interfaces , 1995 .

[73]  D. D Brown,et al.  Convergence to an Evolutionarily Stable Strategy in the Two-Policy Game , 1987, The American Naturalist.

[74]  G. Grimmett,et al.  The Critical Contact Process Dies Out , 1990 .

[75]  A. Dobson,et al.  Ecology of Infectious Diseases in Natural Populations , 1996 .

[76]  Claudia Neuhauser,et al.  Epidemics with Recovery in $D = 2$ , 1991 .

[77]  David A. Rand,et al.  Invasion, stability and evolution to criticality in spatially extended, artificial host—pathogen ecologies , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[78]  Rick Durrett,et al.  Limit theorems for the spread of epidemics and forest fires , 1988 .

[79]  S. Pacala,et al.  Forest models defined by field measurements: I. The design of a northeastern forest simulator , 1993 .

[80]  Rick Durrett,et al.  A New Method for Proving the Existence of Phase Transitions , 1991 .

[81]  G. Nachman SYSTEMS ANALYSIS OF ACARINE PREDATOR-PREY INTERACTIONS. II. THE ROLE OF SPATIAL PROCESSES IN SYSTEM STABILITY , 1987 .

[82]  Peter Grassberger,et al.  On phase transitions in Schlögl's second model , 1982 .

[83]  S. Sawyer Rates of Consolidation in a Selectively Neutral Migration Model , 1977 .

[84]  W. Wilson,et al.  Spatial Instabilities within the Diffusive Lotka-Volterra System: Individual-Based Simulation Results , 1993 .

[85]  M P,et al.  Environmental Heterogeneity and Biological Pattern in a Chaotic Predator – prey System , 1997 .

[86]  Janko Gravner,et al.  Cyclic Cellular Automata in Two Dimensions , 1991 .

[87]  Maury Bramson,et al.  On the Williams-Bjerknes tumour growth model: II , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[88]  T. Maruyama Rate of decrease of genetic variability in a two-dimensional continuous population of finite size. , 1972, Genetics.

[89]  Janko Gravner,et al.  Threshold-range scaling of excitable cellular automata , 1991, patt-sol/9304001.

[90]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[91]  T. E. Harris On a Class of Set-Valued Markov Processes , 1976 .

[92]  R. Durrett Oriented Percolation in Two Dimensions , 1984 .

[93]  Jonathan Silvertown,et al.  Cellular Automaton Models of Interspecific Competition for Space--The Effect of Pattern on Process , 1992 .

[94]  R. Holley,et al.  Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model , 1975 .

[95]  Drossel,et al.  Self-organized critical forest-fire model. , 1992, Physical review letters.

[96]  R. Durrett,et al.  The Importance of Being Discrete (and Spatial) , 1994 .

[97]  T. Maruyama Distribution of gene frequencies in a geographically structured finite population. I. Distribution of neutral genes and of genes with small efect. , 1972, Annals of human genetics.

[98]  J. Thoday Effects of disruptive selection , 1959, Heredity.

[99]  Robert M. May,et al.  Necessity and chance: deterministic chaos in ecology and evolution , 1995 .

[100]  Richard C. Brower,et al.  Critical Exponents for the Reggeon Quantum Spin Model , 1978 .

[101]  E. Tramer,et al.  Bird Species Diversity: Components of Shannon's Formula , 1969 .

[102]  K. Elworthy,et al.  Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals , 1995 .

[103]  Thomas M. Liggett,et al.  Survival of Discrete Time Growth Models, with Applications to Oriented Percolation , 1995 .

[104]  D. Griffeath,et al.  Contact processes in several dimensions , 1982 .

[105]  Tainaka Vortices and strings in a model ecosystem. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  L. Chao,et al.  Structured habitats and the evolution of anticompetitor toxins in bacteria. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Thomas M. Liggett,et al.  The survival of contact processes , 1978 .

[108]  Claudia Neuhauser,et al.  Ergodic theorems for the multitype contact process , 1992 .

[109]  R. May,et al.  Population dynamics and plant community structure: Competition between annuals and perrenials , 1987 .

[110]  M. Kimura,et al.  The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. , 1964, Genetics.

[111]  R. L. Dobrushin,et al.  Gibbs State Describing Coexistence of Phases for a Three-Dimensional Ising Model , 1973 .

[112]  R. Macarthur ON THE RELATIVE ABUNDANCE OF BIRD SPECIES. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[113]  J. T. Cox,et al.  Diffusive Clustering in the Two Dimensional Voter Model , 1986 .

[114]  Maury Bramson,et al.  Asymptotics for interacting particle systems onZd , 1980 .

[115]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[116]  R. Macarthur,et al.  On the Relative Abundance of Species , 1960, The American Naturalist.

[117]  Rick Durrett,et al.  On the Growth of One Dimensional Contact Processes , 1980 .

[118]  D. Tilman Competition and Biodiversity in Spatially Structured Habitats , 1994 .

[119]  Javier E. Satulovsky Lattice Lotka–Volterra Models and Negative Cross-diffusion , 1996 .

[120]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[121]  Simon A. Levin,et al.  Biologically generated spatial pattern and the coexistence of competing species , 1997 .

[122]  F. W. Preston The Commonness, And Rarity, of Species , 1948 .

[123]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[124]  Rick Durrett,et al.  Are there bushes in a forest , 1991 .

[125]  Earl D. McCoy,et al.  The Statistics and Biology of the Species-Area Relationship , 1979, The American Naturalist.

[126]  S. Pacala,et al.  Forest models defined by field measurements : Estimation, error analysis and dynamics , 1996 .

[127]  D. Griffeath Limit Theorems for Nonergodic Set-Valued Markov Processes , 1978 .

[128]  W. Wilson,et al.  Dynamics of Age-Structured and Spatially Structured Predator-Prey Interactions: Individual-Based Models and Population-Level Formulations , 1993, The American Naturalist.

[129]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .

[130]  A mathematical analysis of the stepping stone model of genetic correlation. , 1965 .

[131]  T. E. Harris Additive Set-Valued Markov Processes and Graphical Methods , 1978 .

[132]  Robert M. May,et al.  Spatial Chaos and its Role in Ecology and Evolution , 1994 .

[133]  D. Mollison Epidemic models : their structure and relation to data , 1996 .

[134]  Thomas M. Liggett,et al.  Improved Upper Bounds for the Contact Process Critical Value , 1995 .

[135]  W. Wilson Lotka's game in predator-prey theory: linking populations to individuals. , 1996, Theoretical population biology.

[136]  T. E. Harris A Correlation Inequality for Markov Processes in Partially Ordered State Spaces , 1977 .

[137]  R. Fisher,et al.  The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population , 1943 .

[138]  S. Levin,et al.  FROM INDIVIDUALS TO POPULATION DENSITIES: SEARCHING FOR THE INTERMEDIATE SCALE OF NONTRIVIAL DETERMINISM , 1999 .

[139]  I. Mezić,et al.  Characteristic length scales of spatial models in ecology via fluctuation analysis , 1997 .

[140]  L. R. Dobrushin Investigation of Gibbsian States for Three-Dimensional Lattice Systems , 1974 .

[141]  Rick Durrett,et al.  Ten lectures on particle systems , 1995 .

[142]  G Malécot,et al.  Heterozygosity and relationship in regularly subdivided populations. , 1975, Theoretical population biology.

[143]  Daniel W. Stroock,et al.  In one and two dimensions, every stationary measure for a stochastic Ising Model is a Gibbs state , 1977 .

[144]  M. Hassell,et al.  Persistence of multispecies host-parasitoid interactions in spatially distributed models with local dispersal. , 1996, Journal of theoretical biology.

[145]  Rick Durrett,et al.  Spatial Models for Species-Area Curves , 1996 .

[146]  J. Stephens,et al.  Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[147]  S. Levin Community Equilibria and Stability, and an Extension of the Competitive Exclusion Principle , 1970, The American Naturalist.

[148]  T. E. Harris Contact Interactions on a Lattice , 1974 .

[149]  C. Huffaker Experimental studies on predation : dispersion factors and predator-prey oscillations , 1958 .

[150]  S. Sawyer Results for the Stepping Stone Model for Migration in Population Genetics , 1976 .

[151]  D. Waltner-Toews,et al.  POPULATION DYNAMICS OF RABIES IN WILDLIFE. , 1988 .

[152]  Akira Sasaki,et al.  Statistical Mechanics of Population: The Lattice Lotka-Volterra Model , 1992 .

[153]  Maury Bramson,et al.  Statistical Mechanics of Crabgrass , 1989 .

[154]  R. Durrett,et al.  Asymptotic Critical Value for a Competition Model , 1993 .