AHCODA-DB: a data repository with web-based mining tools for the analysis of automated high-content mouse phenomics data

[1]  John P. A. Ioannidis,et al.  A manifesto for reproducible science , 2017, Nature Human Behaviour.

[2]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease , 2014, Nucleic Acids Res..

[3]  A. Smit,et al.  Sheltering Behavior and Locomotor Activity in 11 Genetically Diverse Common Inbred Mouse Strains Using Home-Cage Monitoring , 2014, PloS one.

[4]  Vootele Voikar,et al.  Spontaneous behavior in the social homecage discriminates strains, lesions and mutations in mice , 2014, Journal of Neuroscience Methods.

[5]  G. Riedel,et al.  Comparison of automated home-cage monitoring systems: Emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions , 2014, Journal of Neuroscience Methods.

[6]  Gautier Koscielny,et al.  The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data , 2013, Nucleic Acids Res..

[7]  B. Spruijt,et al.  High‐throughput phenotyping of avoidance learning in mice discriminates different genotypes and identifies a novel gene , 2012, Genes, brain, and behavior.

[8]  Carol J. Bult,et al.  Mouse Phenome Database (MPD) , 2011, Nucleic Acids Res..

[9]  Richard G M Morris,et al.  Festina lente: Late-night thoughts on high-throughput screening of mouse behavior , 2004, Nature Neuroscience.

[10]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[11]  Robert W. Williams,et al.  WebQTL - Web-based complex trait analysis , 2003, Neuroinformatics.