Study of 0.9Al2O3–0.1TiO2 ceramics prepared by a novel DCC-HVCI method

[1]  Yusheng Shi,et al.  Alumina fiber-reinforced silica matrix composites with improved mechanical properties prepared by a novel DCC-HVCI method , 2017 .

[2]  Yusheng Shi,et al.  Rapid and uniform in-situ solidification of alumina suspension via a non-contamination DCC-HVCI method using MgO sintering additive as coagulating agent , 2017 .

[3]  Yusheng Shi,et al.  Rapid in-situ solidification of SiO2 suspension by direct coagulation casting via controlled release of high valence counter ions from calcium iodate and pH shift , 2017 .

[4]  Jinlong Yang,et al.  Enhanced piezoelectric properties of PZT ceramics prepared by direct coagulation casting via high valence counterions (DCC–HVCI) , 2016 .

[5]  Jinlong Yang,et al.  Direct coagulation casting of yttria-stabilized zirconia using magnesium citrate and glycerol diacetate , 2015 .

[6]  Jinlong Yang,et al.  Direct Coagulation Casting of Alumina Suspension from Calcium Citrate Assisted by pH Shift , 2014 .

[7]  T. Qiu,et al.  Effect of solid loading on gelcasting of silica ceramics using DMAA , 2014 .

[8]  X. Xi,et al.  Direct Coagulation Casting of Alumina Suspension by High Valence Counter Ions Using Ca(IO3)2 as Coagulating Agent , 2012 .

[9]  Jinlong Yang,et al.  Direct Coagulation Casting of Positively Charged Alumina Suspension by Controlled Release of High Valence Counter Ions from Calcium Phosphate , 2012 .

[10]  W. Lei,et al.  Ba0.6Sr0.4TiO3–MgO Ceramic Powders with Uniform Microstructures Prepared by Aqueous Gelcasting‐Assisted Solid‐State Method , 2012 .

[11]  Xiaohong Wang,et al.  Microstructures and dielectric properties of Ba0.6Sr0.4TiO3–MgO ceramics prepared by non-aqueous gelcasting and dry pressing , 2011 .

[12]  Jinlong Yang,et al.  Recent developments in gelcasting of ceramics , 2011 .

[13]  W. Lei,et al.  Effects of aqueous gelcasting and dry pressing on the sinterability and microwave dielectric properties of ZnAl2O4-based ceramics , 2011 .

[14]  Wuming Jia Microwave Dielectric Properties of 0.9Al_2O_3-0.1TiO_2 Ceramics Prepared by Aqueous Gelcasting , 2011 .

[15]  W. Lei,et al.  Microwave dielectric characteristics of Nb2O5-added 0.9Al2O3–0.1TiO2 ceramics , 2009 .

[16]  N. M. Gokhale,et al.  Direct coagulation casting of YSZ powder suspensions using MgO as coagulating agent , 2009 .

[17]  Shiwei Wang,et al.  Gelcasting and Pressureless Sintering of Translucent Alumina Ceramics , 2008 .

[18]  H. Ohsato,et al.  Improvement of the dielectric properties of rutile-doped Al2O3 ceramics by annealing treatment , 2006 .

[19]  Chengxiong Huang,et al.  Sintering behavior and microwave dielectric properties of nano alpha-alumina , 2005 .

[20]  J. Philip,et al.  A low loss, dielectric substrate in ZnAl2O4–TiO2 system for microelectronic applications , 2005 .

[21]  L. Gauckler,et al.  In Situ Rheological Investigation of the Coagulation in Aqueous Alumina Suspensions , 2004 .

[22]  K. Kakimoto,et al.  Controlled Temperature Coefficient of Resonant Frequency of Al2O3-TiO2 Ceramics by Annealing Treatment , 2004 .

[23]  A. Roosen,et al.  Dielectric data of ceramic substrates at high frequencies , 2004 .

[24]  L. Gauckler,et al.  Direct Coagulation Casting via Increasing Ionic Strength , 2002 .

[25]  L. Gauckler,et al.  Ceramic forming using enzyme catalyzed reactions , 1999 .

[26]  P. Warwick,et al.  Application of the Schulze–Hardy rule to haematite and haematite/humate colloid stability , 1999 .

[27]  J. Miane,et al.  Dielectric properties of alumina lamellar ceramics , 1998 .

[28]  N. Alford,et al.  Sintered alumina with low dielectric loss , 1996 .

[29]  L. Gauckler,et al.  Citric Acid—A Dispersant for Aqueous Alumina Suspensions , 1996 .

[30]  David R. Williams,et al.  A reassessment of the applicability of the DLVO theory as an explanation for the Schulze-Hardy rule for colloid aggregation , 1991 .

[31]  B. W. Hakki,et al.  A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range , 1960 .