Analysis of financial data series using fractional Fourier transform and multidimensional scaling
暂无分享,去创建一个
J. Tenreiro Machado | Fernando B. M. Duarte | J. T. Tenreiro Machado | Gonçalo Monteiro Duarte | Fernando B. Duarte | Gonçalo Monteiro Duarte
[1] Haldun M. Özaktas,et al. The fractional fourier transform , 2001, 2001 European Control Conference (ECC).
[2] Edgar Chávez,et al. XFT: Extending the Digital Application of the Fourier Transform , 2009 .
[3] E. Condon,et al. Immersion of the Fourier Transform in a Continuous Group of Functional Transformations. , 1937, Proceedings of the National Academy of Sciences of the United States of America.
[4] D. Sornette,et al. Bubble Diagnosis and Prediction of the 2005-2007 and 2008-2009 Chinese Stock Market Bubbles , 2009, 0909.1007.
[5] K. M. M. Prabhu,et al. The fractional Fourier transform: theory, implementation and error analysis , 2003, Microprocess. Microsystems.
[6] John W. Sammon,et al. A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.
[7] V. Plerou,et al. A unified econophysics explanation for the power-law exponents of stock market activity , 2007 .
[8] Soo-Chang Pei,et al. Relations Between Gabor Transforms and Fractional Fourier Transforms and Their Applications for Signal Processing , 2006, IEEE Transactions on Signal Processing.
[9] V. Plerou,et al. Econophysics: financial time series from a statistical physics point of view , 2000 .
[10] Rui Vilela Mendes,et al. A Data-Reconstructed Fractional Volatility Model , 2008 .
[11] G. Seber. Multivariate observations / G.A.F. Seber , 1983 .
[12] Kâmil Uğurbil,et al. Cerebral cortical mechanisms of copying geometrical shapes: a multidimensional scaling analysis of fMRI patterns of activation , 2009, Experimental Brain Research.
[13] R. Vilela Mendes. A fractional calculus interpretation of the fractional volatility model , 2008 .
[14] Ran Tao,et al. Sampling and Sampling Rate Conversion of Band Limited Signals in the Fractional Fourier Transform Domain , 2008, IEEE Transactions on Signal Processing.
[15] Rajiv Saxena,et al. Fractional Fourier transform: A novel tool for signal processing , 2013 .
[16] P. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 1999 .
[17] Raoul R. Nigmatullin,et al. Universal distribution function for the strongly-correlated fluctuations: General way for description of different random sequences , 2010 .
[18] Yiming Ji,et al. Precise distributed localization algorithms for wireless networks , 2005, Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks.
[19] Xiang Ji,et al. Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling , 2004, IEEE INFOCOM 2004.
[20] Gozde Bozdagi Akar,et al. Digital computation of the fractional Fourier transform , 1996, IEEE Trans. Signal Process..
[21] Jorge Henriques,et al. Iterative Multidimensional Scaling for Industrial Process Monitoring , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.
[22] Frankie K. W. Chan,et al. Efficient Weighted Multidimensional Scaling for Wireless Sensor Network Localization , 2009, IEEE Transactions on Signal Processing.
[23] Joseph Woelfel,et al. Multidimensional scaling in Riemann space , 1982 .
[24] Myron Wish,et al. Three-Way Multidimensional Scaling , 1978 .
[25] Joseph L. Zinnes,et al. Theory and Methods of Scaling. , 1958 .
[26] A. Bultheel,et al. Computation of the fractional Fourier transform , 2004 .
[27] J. A. Tenreiro Machado,et al. Fractional Dynamics in Mechanical Manipulation , 2007 .
[28] James O. Ramsay,et al. Some small sample results for maximum likelihood estimation in multidimensional scaling , 1980 .