Analysis of financial data series using fractional Fourier transform and multidimensional scaling

The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.

[1]  Haldun M. Özaktas,et al.  The fractional fourier transform , 2001, 2001 European Control Conference (ECC).

[2]  Edgar Chávez,et al.  XFT: Extending the Digital Application of the Fourier Transform , 2009 .

[3]  E. Condon,et al.  Immersion of the Fourier Transform in a Continuous Group of Functional Transformations. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Sornette,et al.  Bubble Diagnosis and Prediction of the 2005-2007 and 2008-2009 Chinese Stock Market Bubbles , 2009, 0909.1007.

[5]  K. M. M. Prabhu,et al.  The fractional Fourier transform: theory, implementation and error analysis , 2003, Microprocess. Microsystems.

[6]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[7]  V. Plerou,et al.  A unified econophysics explanation for the power-law exponents of stock market activity , 2007 .

[8]  Soo-Chang Pei,et al.  Relations Between Gabor Transforms and Fractional Fourier Transforms and Their Applications for Signal Processing , 2006, IEEE Transactions on Signal Processing.

[9]  V. Plerou,et al.  Econophysics: financial time series from a statistical physics point of view , 2000 .

[10]  Rui Vilela Mendes,et al.  A Data-Reconstructed Fractional Volatility Model , 2008 .

[11]  G. Seber Multivariate observations / G.A.F. Seber , 1983 .

[12]  Kâmil Uğurbil,et al.  Cerebral cortical mechanisms of copying geometrical shapes: a multidimensional scaling analysis of fMRI patterns of activation , 2009, Experimental Brain Research.

[13]  R. Vilela Mendes A fractional calculus interpretation of the fractional volatility model , 2008 .

[14]  Ran Tao,et al.  Sampling and Sampling Rate Conversion of Band Limited Signals in the Fractional Fourier Transform Domain , 2008, IEEE Transactions on Signal Processing.

[15]  Rajiv Saxena,et al.  Fractional Fourier transform: A novel tool for signal processing , 2013 .

[16]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[17]  Raoul R. Nigmatullin,et al.  Universal distribution function for the strongly-correlated fluctuations: General way for description of different random sequences , 2010 .

[18]  Yiming Ji,et al.  Precise distributed localization algorithms for wireless networks , 2005, Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks.

[19]  Xiang Ji,et al.  Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling , 2004, IEEE INFOCOM 2004.

[20]  Gozde Bozdagi Akar,et al.  Digital computation of the fractional Fourier transform , 1996, IEEE Trans. Signal Process..

[21]  Jorge Henriques,et al.  Iterative Multidimensional Scaling for Industrial Process Monitoring , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[22]  Frankie K. W. Chan,et al.  Efficient Weighted Multidimensional Scaling for Wireless Sensor Network Localization , 2009, IEEE Transactions on Signal Processing.

[23]  Joseph Woelfel,et al.  Multidimensional scaling in Riemann space , 1982 .

[24]  Myron Wish,et al.  Three-Way Multidimensional Scaling , 1978 .

[25]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[26]  A. Bultheel,et al.  Computation of the fractional Fourier transform , 2004 .

[27]  J. A. Tenreiro Machado,et al.  Fractional Dynamics in Mechanical Manipulation , 2007 .

[28]  James O. Ramsay,et al.  Some small sample results for maximum likelihood estimation in multidimensional scaling , 1980 .