An Analytical Tuning Approach for Adaptive MPC Parameters Applied to LTV SISO Systems

A successful implementation of model predictive control (MPC) requires parameters appropriately tuned. Such a goal is more difficult to reach with Linear-Time-Variant (LTV) systems. This is the reason why an analytical method is proposed here and especially detailed in the case of controllable single-input-single-output (SISO) systems. As an advantage, it can be applied online to indirect-adaptive MPC (IA-MPC) while guarantying the closed-loop stability and limiting the tuning computational load. Simulation results shown emphasize its effectiveness when compared to existing methods.

[1]  Martin Vetterli,et al.  The effective rank: A measure of effective dimensionality , 2007, 2007 15th European Signal Processing Conference.

[2]  Liuping Wang,et al.  Model Predictive Control System Design and Implementation Using MATLAB , 2009 .

[3]  H. Benlaoukli,et al.  Méthodes géométriques pour la construction des ensembles invariants. Application à la faisabilité des lois de commande prédictive , 2009 .

[4]  Akbar Tohidi,et al.  Self-Tuning Adaptive Multiple Model Predictive Control with application to pH Control process , 2016, 2016 IEEE International Conference on Automation Science and Engineering (CASE).

[5]  Darci Odloak,et al.  An infinite horizon model predictive control for stable and integrating processes , 2003, Comput. Chem. Eng..

[6]  M. Soroush,et al.  Model Predictive Control Tuning Methods: A Review , 2010 .

[7]  Jerry Mamboundou Commande prédictive à base d'état adaptive indirecte supervisée par la logique floue , 2013 .

[8]  Leonardo Trujillo,et al.  Systematic selection of tuning parameters for efficient predictive controllers using a multiobjective evolutionary algorithm , 2015, Appl. Soft Comput..

[9]  G. Duan,et al.  LMIs in Control Systems: Analysis, Design and Applications , 2013 .

[10]  Ankush C. Jahagirdar,et al.  Effect of tuning parameters on performance of first-order plus dead-time processes using Generalized Predictive Control , 2015, 2015 International Conference on Industrial Instrumentation and Control (ICIC).

[11]  Robin DE KEYSER,et al.  MODEL BASED PREDICTIVE CONTROL FOR LINEAR SYSTEMS , 2011 .

[12]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[13]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[14]  E. Camacho,et al.  Generalized Predictive Control , 2007 .

[15]  D. G. Fisher,et al.  Robust stability of model predictive control , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[16]  Didier Dumur,et al.  Direct Adaptive Generalized Predictive Control. Application to Motor Drives with Flexible Modes , 2000 .

[17]  Nicolas Langlois,et al.  Indirect adaptive model predictive control supervised by fuzzy logic , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[18]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[19]  Nicolas Langlois,et al.  A practical tuning approach for multivariable model predictive control , 2017, 2017 13th IEEE International Conference on Control & Automation (ICCA).