Modeling Spatial Processes with Unknown Extremal Dependence Class

ABSTRACT Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models that exhibit a property known as asymptotic independence. However, weakening dependence does not automatically imply asymptotic independence, and whether the process is truly asymptotically (in)dependent is usually far from clear. The distinction is key as it can have a large impact upon extrapolation, that is, the estimated probabilities of events more extreme than those observed. In this work, we present a single spatial model that is able to capture both dependence classes in a parsimonious manner, and with a smooth transition between the two cases. The model covers a wide range of possibilities from asymptotic independence through to complete dependence, and permits weakening dependence of extremes even under asymptotic dependence. Censored likelihood-based inference for the implied copula is feasible in moderate dimensions due to closed-form margins. The model is applied to oceanographic datasets with ambiguous true limiting dependence structure. Supplementary materials for this article are available online.

[1]  George Grosvenor Statistics of the Abatement in Crime in England and Wales, during the Twenty Years Ended 1887–88 , 1890 .

[2]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[3]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[4]  N. Reid,et al.  AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .

[5]  Ying Sun,et al.  OF SPATIAL EXTREMES : MEASURING SPATIAL DEPENDENCE AND MODELING SPATIAL EFFECTS , 2012 .

[6]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[7]  S. Coles,et al.  Models and inference for uncertainty in extremal dependence , 2002 .

[8]  Marc G. Genton,et al.  Full likelihood inference for max‐stable data , 2017, Stat.

[9]  B. Shaby,et al.  Discussion of "Statistical Modeling of Spatial Extremes" by A. C. Davison, S. A. Padoan and M. Ribatet , 2012, 1208.3574.

[10]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[11]  William F. Rosenberger,et al.  Likelihood‐Based Inference , 2006 .

[12]  Sidney I. Resnick,et al.  Hidden Regular Variation, Second Order Regular Variation and Asymptotic Independence , 2002 .

[13]  Johan Segers,et al.  An M‐estimator of spatial tail dependence , 2014, 1403.1975.

[14]  Raphael de Fondeville,et al.  High-dimensional peaks-over-threshold inference for the Brown-Resnick process , 2016, 1605.08558.

[15]  Thomas Opitz,et al.  Modeling asymptotically independent spatial extremes based on Laplace random fields , 2015, 1507.02537.

[16]  J. Segers MAX-STABLE MODELS FOR MULTIVARIATE EXTREMES , 2012, 1204.0332.

[17]  Pavel Krupskii,et al.  Factor Copula Models for Replicated Spatial Data , 2015, 1511.03000.

[18]  L. Haan,et al.  Extreme value theory , 2006 .

[19]  Thomas Opitz,et al.  Efficient inference and simulation for elliptical Pareto processes , 2013, 1401.0168.

[20]  Anthony C. Davison,et al.  Statistical Modelling of Spatial Extremes , 2012 .

[21]  M. Schlather,et al.  Estimation of Hüsler–Reiss distributions and Brown–Resnick processes , 2012, 1207.6886.

[22]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[23]  Anthony C. Davison,et al.  Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures , 2015, 1506.07836.

[24]  Jonathan A. Tawn,et al.  Modelling Dependence within Joint Tail Regions , 1997 .

[25]  Darmesah Gabda,et al.  Discussion of “Statistical Modeling of Spatial Extremes” by A. C. Davison, S. A. Padoan and M. Ribatet , 2012 .

[26]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[27]  A. Davison,et al.  Geostatistics of Dependent and Asymptotically Independent Extremes , 2013, Mathematical Geosciences.

[28]  A. Jenkinson The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .

[29]  Jonathan Tawn,et al.  Modelling across extremal dependence classes , 2014, 1408.5060.

[30]  Jonathan A. Tawn,et al.  Dependence modelling for spatial extremes , 2012 .

[31]  A. Davison,et al.  Composite likelihood estimation for the Brown–Resnick process , 2013 .

[32]  Richard L. Smith,et al.  Estimating the Extremal Index , 1994 .

[33]  J. Tawn,et al.  Efficient inference for spatial extreme value processes associated to log-Gaussian random functions , 2014 .

[34]  Anthony C. Davison,et al.  Statistics of Extremes , 2015 .

[35]  Richard L. Smith,et al.  Markov chain models for threshold exceedances , 1997 .

[36]  Johan Segers,et al.  Multivariate generalized Pareto distributions: Parametrizations, representations, and properties , 2017, J. Multivar. Anal..

[37]  A. Davison,et al.  Likelihood estimators for multivariate extremes , 2014, 1411.3448.

[38]  Jonathan A. Tawn,et al.  Exploiting occurrence times in likelihood inference for componentwise maxima , 2005 .

[39]  J. L. Wadsworth,et al.  On the occurrence times of componentwise maxima and bias in likelihood inference for multivariate max-stable distributions , 2014, 1410.6733.

[40]  P. Embrechts,et al.  Dependence modeling with copulas , 2007 .

[41]  Stefano Castruccio,et al.  High-Order Composite Likelihood Inference for Max-Stable Distributions and Processes , 2014, 1411.0086.

[42]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[43]  Jorge Alberto Achcar,et al.  Markov Chain Models , 2012 .

[44]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[45]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[46]  Anthony C. Davison,et al.  High-dimensional peaks-over-threshold inference for the Brown-Resnick process , 2016 .

[47]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[48]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[49]  Raphael Huser,et al.  Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures , 2016, 1610.04536.

[50]  L. Haan,et al.  The generalized Pareto process; with a view towards application and simulation , 2012, 1203.2551.