Crystallographic phase transition and high-Tc superconductivity in LaFeAsO:F

Undoped LaFeAsO, the parent compound of the newly found high-Tc superconductor, exhibits a sharp decrease in the temperature-dependent resistivity at ∼160 K. The anomaly can be suppressed by F doping with simultaneous appearance of superconductivity appears correspondingly, suggesting a close association of the anomaly with the superconductivity. We examined the crystal structures, magnetic properties and conductivity of undoped (normal conductor) and 14 at.% F-doped LaFeAsO (Tc = 20 K) by synchrotron x-ray diffraction (XRD), DC magnetic measurements, and ab initio calculations demonstrated that the anomaly is associated with a phase transition from tetragonal (P4/nmm) to orthorhombic (Cmma) phases at ∼160 K as well as an antiferromagnetic spin ordering transition at ∼140 K. These transitions can be explained by spin configuration-dependent potential energy surfaces derived from the ab initio calculations. The suppression of the transitions is ascribed to interrelated effects of geometric and electronic structural changes due to doping by F− ions.

[1]  C. Chu,et al.  Superconducting Fe-based compounds (A1-xSrx)Fe2As2 with A=K and Cs with transition temperatures up to 37 K. , 2008, Physical review letters.

[2]  J. Tapp,et al.  LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K , 2008, 0807.2274.

[3]  A. Huq,et al.  Superconductivity in LaFe1-xCoxAsO , 2008, 0807.0823.

[4]  H. Hosono,et al.  Ferromagnetic spin fluctuation in LaFeAsO 1 − x F x , 2008, 0806.3304.

[5]  Hiroshi Eisaki,et al.  Superconductivity at 54 K in F-Free NdFeAsO1-y , 2008 .

[6]  T. Kamiya,et al.  Itinerant ferromagnetism in the layered crystals LaCoOX(X=P,As) , 2008, 0806.0123.

[7]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[8]  T. Kamiya,et al.  Nickel-based layered superconductor, LaNiOAs , 2008, 0805.4340.

[9]  Z. Ren,et al.  The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs , 2008, 0805.3992.

[10]  T. Kamiya,et al.  Electromagnetic properties and electronic structure of the iron-based layered superconductor LaFePO , 2008, 0805.2983.

[11]  H. Hosono,et al.  Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs , 2008, Nature.

[12]  H. Hosono,et al.  Spin Ordering in LaFeAsO and Its Suppression in Superconductor LaFeAsO0.89F0.11 Probed by Mössbauer Spectroscopy , 2008, 0805.0041.

[13]  H. Hosono,et al.  Evolution from Itinerant Antiferromagnet to Unconventional Superconductor with Fluorine Doping in LaFeAs(O1-xFx) Revealed by 75As and 139La Nuclear Magnetic Resonance , 2008, 0804.4765.

[14]  Z. Ren,et al.  Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO , 2008, 0804.4290.

[15]  Z. Ren,et al.  Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping , 2008, 0804.2582.

[16]  T. Yildirim Origin of the 150-K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition. , 2008, Physical review letters.

[17]  H. Mook,et al.  Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems , 2008, Nature.

[18]  Jianheng Luo,et al.  Element substitution effect in transition metal oxypnictide Re(O(1-x)F(x))TAs (Re=rare earth, T=transition metal) , 2008, 0803.4384.

[19]  Xiyu Zhu,et al.  Synthesis and characterization of the hole-doped nickel-based superconductor La(1-x)Sr(x)NiAsO , 2008, 0810.1418.

[20]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[21]  T. Kamiya,et al.  Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP. , 2007, Inorganic chemistry.

[22]  T. Nilges,et al.  Dimorphic CeZnPO and PrZnPO , 2006 .

[23]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[24]  M. Sakata,et al.  The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies , 2001 .

[25]  M. Kulić Interplay of electron–phonon interaction and strong correlations: the possible way to high-temperature superconductivity , 2000 .

[26]  W. Jeitschko,et al.  Quaternary rare earth transition metal arsenide oxides RTAsO (T=Fe, Ru, Co) with ZrCuSiAs type structure , 2000 .

[27]  W. Jeitschko,et al.  Equiatomic Quaternary Rare Earth Element Zinc Pnictide Oxides RZnPO and RZnAsO. , 1998, Inorganic chemistry.

[28]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[29]  M. Reehuis,et al.  The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure , 1995 .

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  Wang,et al.  Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. , 1992, Physical review. B, Condensed matter.

[32]  Y. Takahashi On the Origin of the Curie-Weiss Law of the Magnetic Susceptibility in Itinerant Electron Ferromagnetism , 1986 .

[33]  J. R. Schrieffer,et al.  Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions , 1974 .

[34]  L. Walker,et al.  Paramagnetic Excited State of FeSi , 1967 .

[35]  H. Callen,et al.  The Magnetic Susceptibility of the Transition Elements , 1954 .

[36]  G. Gehring,et al.  Co-operative Jahn-Teller effects , 1975 .