Crystallographic phase transition and high-Tc superconductivity in LaFeAsO:F
暂无分享,去创建一个
S. W. Kim | H. Hosono | P. Sushko | A. Shluger | M. Hirano | Kenichi Kato | M. Takata | Sung Wng Kim | P. Sushko | Y. Kamihara | H. Hosono | Takatoshi Nomura | K. Kato | A. Shluger | T. Nomura | M. Takata
[1] C. Chu,et al. Superconducting Fe-based compounds (A1-xSrx)Fe2As2 with A=K and Cs with transition temperatures up to 37 K. , 2008, Physical review letters.
[2] J. Tapp,et al. LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K , 2008, 0807.2274.
[3] A. Huq,et al. Superconductivity in LaFe1-xCoxAsO , 2008, 0807.0823.
[4] H. Hosono,et al. Ferromagnetic spin fluctuation in LaFeAsO 1 − x F x , 2008, 0806.3304.
[5] Hiroshi Eisaki,et al. Superconductivity at 54 K in F-Free NdFeAsO1-y , 2008 .
[6] T. Kamiya,et al. Itinerant ferromagnetism in the layered crystals LaCoOX(X=P,As) , 2008, 0806.0123.
[7] Marcus Tegel,et al. Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.
[8] T. Kamiya,et al. Nickel-based layered superconductor, LaNiOAs , 2008, 0805.4340.
[9] Z. Ren,et al. The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs , 2008, 0805.3992.
[10] T. Kamiya,et al. Electromagnetic properties and electronic structure of the iron-based layered superconductor LaFePO , 2008, 0805.2983.
[11] H. Hosono,et al. Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs , 2008, Nature.
[12] H. Hosono,et al. Spin Ordering in LaFeAsO and Its Suppression in Superconductor LaFeAsO0.89F0.11 Probed by Mössbauer Spectroscopy , 2008, 0805.0041.
[13] H. Hosono,et al. Evolution from Itinerant Antiferromagnet to Unconventional Superconductor with Fluorine Doping in LaFeAs(O1-xFx) Revealed by 75As and 139La Nuclear Magnetic Resonance , 2008, 0804.4765.
[14] Z. Ren,et al. Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO , 2008, 0804.4290.
[15] Z. Ren,et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping , 2008, 0804.2582.
[16] T. Yildirim. Origin of the 150-K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition. , 2008, Physical review letters.
[17] H. Mook,et al. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems , 2008, Nature.
[18] Jianheng Luo,et al. Element substitution effect in transition metal oxypnictide Re(O(1-x)F(x))TAs (Re=rare earth, T=transition metal) , 2008, 0803.4384.
[19] Xiyu Zhu,et al. Synthesis and characterization of the hole-doped nickel-based superconductor La(1-x)Sr(x)NiAsO , 2008, 0810.1418.
[20] Hideo Hosono,et al. Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.
[21] T. Kamiya,et al. Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP. , 2007, Inorganic chemistry.
[22] T. Nilges,et al. Dimorphic CeZnPO and PrZnPO , 2006 .
[23] T. Kamiya,et al. Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.
[24] M. Sakata,et al. The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies , 2001 .
[25] M. Kulić. Interplay of electron–phonon interaction and strong correlations: the possible way to high-temperature superconductivity , 2000 .
[26] W. Jeitschko,et al. Quaternary rare earth transition metal arsenide oxides RTAsO (T=Fe, Ru, Co) with ZrCuSiAs type structure , 2000 .
[27] W. Jeitschko,et al. Equiatomic Quaternary Rare Earth Element Zinc Pnictide Oxides RZnPO and RZnAsO. , 1998, Inorganic chemistry.
[28] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[29] M. Reehuis,et al. The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure , 1995 .
[30] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[31] Wang,et al. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. , 1992, Physical review. B, Condensed matter.
[32] Y. Takahashi. On the Origin of the Curie-Weiss Law of the Magnetic Susceptibility in Itinerant Electron Ferromagnetism , 1986 .
[33] J. R. Schrieffer,et al. Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions , 1974 .
[34] L. Walker,et al. Paramagnetic Excited State of FeSi , 1967 .
[35] H. Callen,et al. The Magnetic Susceptibility of the Transition Elements , 1954 .
[36] G. Gehring,et al. Co-operative Jahn-Teller effects , 1975 .