The X-ray counterpart to the gravitational-wave event GW170817

A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration. The observational support for this model, however, is only indirect. A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth. Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta, observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.

[1]  Tsvi Piran,et al.  The cocoon emission - an electromagnetic counterpart to gravitational waves from neutron star mergers , 2017, 1705.10797.

[2]  T. Fang,et al.  ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS , 2016, 1606.00140.

[3]  Bing Zhang,et al.  GRB 080503 LATE AFTERGLOW RE-BRIGHTENING: SIGNATURE OF A MAGNETAR-POWERED MERGER-NOVA , 2015, 1506.06816.

[4]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[5]  D. Lazzati,et al.  Afterglow light curves, viewing angle and the jet structure of γ-ray bursts , 2002 .

[6]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[7]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[8]  Dominic M. Ryan,et al.  MODELING THE AFTERGLOW OF THE POSSIBLE FERMI-GBM EVENT ASSOCIATED WITH GW150914 , 2016, 1602.05529.

[9]  E. Rossi,et al.  Delayed X-ray emission from fallback in compact-object mergers , 2008, 0808.1284.

[10]  Elena M. Rossi,et al.  Afterglow Lightcurves, Viewing Angle and the Jet Structure of Gamma‐Ray Bursts , 2003 .

[11]  A. Melandri,et al.  A complete sample of bright Swift short gamma-ray bursts , 2014, 1405.5131.

[12]  D. Swartz,et al.  A COMPLETE SAMPLE OF ULTRALUMINOUS X-RAY SOURCE HOST GALAXIES , 2011 .

[13]  J. Rhoads How to Tell a Jet from a Balloon: A Proposed Test for Beaming in Gamma-Ray Bursts , 1997, astro-ph/9705163.

[14]  S. E. W. oosley,et al.  OFF-AXIS AFTERGLOW EMISSION FROM JETTED GAMMA-RAY BURSTS , 2008 .

[15]  A. MacFadyen,et al.  GAMMA-RAY BURSTS ARE OBSERVED OFF-AXIS , 2014, 1405.5516.

[16]  E. Nakar,et al.  X-RAY-POWERED MACRONOVAE , 2015, 1508.05093.

[17]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[18]  A. J. van der Horst,et al.  GAMMA-RAY BURST AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON HYDRODYNAMICS SIMULATIONS , 2011, 1110.5089.

[19]  M. M. Kasliwal,et al.  A radio counterpart to a neutron star merger , 2017, Science.

[20]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[21]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[22]  F. J. Carrera,et al.  High precision X-ray log N – log S distributions: implications for the obscured AGN population , 2008, 0809.1939.

[23]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[24]  Matteo Cantiello,et al.  Off-axis Prompt X-Ray Transients from the Cocoon of Short Gamma-Ray Bursts , 2017, 1709.01468.

[25]  A. MacFadyen,et al.  GAMMA-RAY BURST AFTERGLOW SCALING RELATIONS FOR THE FULL BLAST WAVE EVOLUTION , 2011, 1111.3355.

[26]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[27]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[28]  M. Im,et al.  OPTICAL–NEAR-INFRARED COLOR GRADIENTS AND MERGING HISTORY OF ELLIPTICAL GALAXIES , 2013, 1302.3003.

[29]  N. Gehrels,et al.  PRECURSORS OF SHORT GAMMA-RAY BURSTS , 2010, 1009.1385.

[30]  A. Lien,et al.  AN ACHROMATIC BREAK IN THE AFTERGLOW OF THE SHORT GRB 140903A: EVIDENCE FOR A NARROW JET , 2016, 1605.03573.

[31]  Bing Zhang,et al.  GAMMA-RAY BURST AFTERGLOW WITH CONTINUOUS ENERGY INJECTION: SIGNATURE OF A HIGHLY MAGNETIZED MILLISECOND PULSAR , 2000 .

[32]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[33]  H. Nagakura,et al.  JET COLLIMATION IN THE EJECTA OF DOUBLE NEUTRON STAR MERGERS: A NEW CANONICAL PICTURE OF SHORT GAMMA-RAY BURSTS , 2014, 1403.0956.

[34]  Chris L. Fryer,et al.  Relativistic opacities for astrophysical applications , 2015 .

[35]  E. Nakar,et al.  The electromagnetic signals of compact binary mergers , 2012, 1204.6242.

[36]  G. Efstathiou,et al.  Line-strengths in early-type galaxies , 1990, Monthly Notices of the Royal Astronomical Society.

[37]  Chris L. Fryer,et al.  A line-smeared treatment of opacities for the spectra and light curves from macronovae , 2017, 1702.02990.

[38]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[39]  Meng-Ru Wu,et al.  RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.

[40]  Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[41]  R. Kashyap,et al.  LIGHT CURVES AND SPECTRA FROM A THERMONUCLEAR EXPLOSION OF A WHITE DWARF MERGER , 2015, 1510.04286.

[42]  Filippo Frontera,et al.  Accepted for publication in the Astrophysical Journal 2001, v. 555 Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE METAMORPHOSIS OF SN 1998BW ‡ , 1999 .

[43]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[44]  Vicky Kalogera,et al.  A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817 , 2017, 1710.05852.

[45]  W. Myers,et al.  Nuclear ground state masses and deformations , 1995 .

[46]  O. Graur,et al.  THE SPECTRAL SN-GRB CONNECTION: SYSTEMATIC SPECTRAL COMPARISONS BETWEEN TYPE Ic SUPERNOVAE AND BROAD-LINED TYPE Ic SUPERNOVAE WITH AND WITHOUT GAMMA-RAY BURSTS , 2015, 1509.07124.

[47]  A. MacFadyen,et al.  OFF-AXIS GAMMA-RAY BURST AFTERGLOW MODELING BASED ON A TWO-DIMENSIONAL AXISYMMETRIC HYDRODYNAMICS SIMULATION , 2010, 1006.5125.

[48]  A. Lien,et al.  The Environment of the Binary Neutron Star Merger GW170817 , 2017, 1710.05444.

[49]  Zuker,et al.  Microscopic mass formulas. , 1995, Physical review. C, Nuclear physics.

[50]  Tsvi Piran,et al.  Detectable radio flares following gravitational waves from mergers of binary neutron stars , 2011, Nature.

[51]  H. L. Zhang,et al.  The Los Alamos suite of relativistic atomic physics codes , 2015 .

[52]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[53]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants { II. Radioactively powered transients , 2013, 1307.2943.

[54]  Gregory A. Moses,et al.  RADIATION TRANSPORT FOR EXPLOSIVE OUTFLOWS: A MULTIGROUP HYBRID MONTE CARLO METHOD , 2013, 1306.5700.

[55]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[56]  R. Wollaeger,et al.  RADIATION TRANSPORT FOR EXPLOSIVE OUTFLOWS: OPACITY REGROUPING , 2014, 1407.3833.

[57]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet , 2017, 1710.05431.

[58]  Sang-Mok Cha,et al.  KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES , 2016 .

[59]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[60]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[61]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[62]  Davide Lazzati,et al.  Off-axis emission of short γ-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers , 2016, 1610.01157.

[63]  P. Giommi,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[64]  J. Sollerman,et al.  Detectability of compact binary merger macronovae , 2016, 1611.09822.

[65]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[66]  Norman A. Grogin,et al.  The Hubble Space Telescope "Program of Last Resort" , 2017 .

[67]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[68]  Chris L. Fryer,et al.  Swift and NuSTAR observations of GW170817: Detection of a blue kilonova , 2017, Science.

[69]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[70]  P. J. Teuben,et al.  A retrospective view of Miriad , 1995 .

[71]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[72]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[73]  T. Piran,et al.  The Macronova in GRB 050709 and the GRB-macronova connection , 2016, Nature Communications.

[74]  Miguel A. Aloy,et al.  THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS , 2011, 1101.4298.

[75]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[76]  L. Piro,et al.  Properties of X- Ray Rich Gamma Ray Bursts and X-Ray Flashes , 2005, astro-ph/0511272.

[77]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.