Viscosity equations of pure fluids in an innovative extended corresponding states framework. I. Modelling techniques

Abstract Application of the extended corresponding states (ECS) technique to thermodynamic and transport properties has demonstrated that there are different requirements for conformality of data for these two sets of properties. In addition to the thermodynamic shape factors, derived from accurate equations of state for both the target and reference fluids, there is a need for an additional shape factor, derived from transport property data of the target fluid, in order to fit the transport properties. As a result, a new ECS model is proposed here for viscosity, which uses a single, new viscosity shape factor, which is generated just from viscosity data over the available PρT surface. In this way, there is no need to determine shape factors from thermodynamics. By application to ethane and refrigerant R134a, it is shown that the scale function is a smooth function of temperature and pressure. The scale function is then represented through a neural network, because of the flexibility and the high data fitting capability of that technique. The accuracy of viscosity data representation on the basis of this model is similar to that obtained with the conventional approach, by summing the dilute gas, the excess and the critical enhancement contributions. The non-theoretical and completely heuristic nature of the model also allows its application to the statistical screening of the experimental data. Furthermore, the variables conversion T,P→T,ρ does not necessarily require an equation of state, as is the case for the historic ECS transport properties model, and this can be carried out by a density model like that recently presented by Cristofoli and co-workers [1] , [2] for the family of refrigerant fluids.

[1]  Jan V. Sengers,et al.  Transport properties of 1,1-difluoroethane (R152a) , 1996 .

[2]  R. Tillner-Roth,et al.  A fundamental equation of state for 1,1-difluoroethane (HFC-152a) , 1995 .

[3]  George Granger. Brown,et al.  Correlating Fluid Viscosity , 1943 .

[4]  N. Shibasaki-Kitakawa,et al.  Viscosity of Gaseous HFC-134a (1,1,1,2-Tetrafluoroethane) Under High Pressures , 1998 .

[5]  I. D. Watson,et al.  The prediction of the thermodynamic properties of fluids and fluid mixtures-I The principle of corresponding states and its extensions , 1969 .

[6]  James F. Ely,et al.  Prediction of viscosity of refrigerants and refrigerant mixtures , 1992 .

[7]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .

[8]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[9]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[10]  L. Piazza,et al.  Application of Neural Networks to a Predictive Extended Corresponding States Model for Pure Halocarbon Thermodynamics , 2002 .

[11]  J. Kestin,et al.  The viscosity and diffusion coefficients of the mixtures of four light hydrocarbon gases , 1978 .

[12]  B. Sage,et al.  Viscosity of Ethane at High Pressures. , 1963 .

[13]  J. Kestin,et al.  Reference values of the viscosity of twelve gases at 25°C , 1971 .

[14]  J. Kestin,et al.  The viscosity of five gaseous hydrocarbons , 1977 .

[15]  Marc J. Assael,et al.  Measurements of the viscosity of refrigerants in the vapor phase , 1997 .

[16]  Lizhong Han,et al.  Viscosity of Saturated Liquid for 1,1,1,2-Tetrofluoroethane , 1995 .

[17]  A. Leipertz,et al.  Dynamic viscosity measurements by photon correlation spectroscopy , 1995 .

[18]  D. Friend,et al.  Prediction of the thermal conductivity of refrigerants and refrigerant mixtures , 1992 .

[19]  W. B. Whiting,et al.  A corresponding-states treatment for the viscosity of polar fluids , 1987 .

[20]  H. Hanley Prediction of the viscosity and thermal conductivity coefficients of mixtures , 1976 .

[21]  Daniel G. Friend,et al.  Thermophysical Properties of Ethane , 1991 .

[22]  Y. Ishida.,et al.  Determination of Viscosities and of the Stokes-Millikan Law Constant by the Oil-Drop Method , 1923 .

[23]  Hiroshi Adzumi Studies on the Flow of Gaseous Mixtures through Capillaries. I The Viscosity of Binary Gaseous Mixtures , 1937 .

[24]  W. Wakeham,et al.  Density and Viscosity Measurements of 1,1,1,2-Tetrafluoroethane (HFC-134a) from 199 K to 298 K and up to 100 MPa , 1996 .

[25]  H. Vogel Über die Viskosität einiger Gase und ihre Temperaturabhängigkeit bei tiefen Temperaturen , 1914 .

[26]  K. E. Starling,et al.  Liquid, Gas, and Dense Fluid Viscosity of Ethane. , 1962 .

[27]  J. Ely,et al.  Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane , 1987 .

[28]  Cornelia Küchenmeister,et al.  Reference Correlation of the Viscosity of Propane , 1998 .

[29]  A. Nagashima,et al.  Measurement of the viscosity of HFC 134a in the temperature range 213–423 K and at pressures up to 30 MPa , 1992 .

[30]  H. Kubota,et al.  VISCOSITY OF BINARY GASEOUS MIXTURES OF FLUOROCARBONS , 1986 .

[31]  O. Matar,et al.  Viscosity of the saturated liquid phase of six halogenated compounds and three mixtures , 1993 .

[32]  H. Baehr,et al.  An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2‐Tetrafluoroethane (HFC‐134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa , 1994 .

[33]  C. Yokoyama,et al.  Viscosity of Gaseous HCFC-123 (2,2-Dichloro-1,1,1-Trifluoroethane) in the Temperature Range from 323.15 to 423.15 K and at Pressures up to 2 MPa , 2000 .

[34]  Vera Kurková,et al.  Kolmogorov's theorem and multilayer neural networks , 1992, Neural Networks.

[35]  Robert C. Shair,et al.  Thermodynamic Properties of Halogenated Ethanes and Ethylenes , 1955 .

[36]  F. Mayinger,et al.  Viscosity of gaseous R123, R134a, and R142b , 1992 .

[37]  Giancarlo Scalabrin,et al.  A corresponding states predictive model for the saturated liquid density of halogenated alkanes and of fluorinated propanes and ethers , 2000 .

[38]  Howard J. M. Hanley,et al.  Prediction of transport properties. 1. Viscosity of fluids and mixtures , 1981 .

[39]  B. Schramm,et al.  Measurements of the Second Virial Coefficients of Some New Chlorofluorocarbons and of Their Binary Mixtures at Temperatures in the Range from 296 K to 475 K , 1992 .

[40]  A. Laesecke,et al.  Measurements of the viscosities of saturated and compressed liquid 1,1,1,2-tetrafluoroethane (R134a), 2,2-dichloro-1,1,1-trifluoroethane (R123) and 1,1-dichloro-1-fluoroemane (R141b) , 1993 .

[41]  A. Kumagai,et al.  Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K , 1991 .

[42]  Marc J. Assael,et al.  The transport properties of ethane. I. Viscosity , 1994 .

[43]  P. S. Gulik,et al.  Viscosity of saturated R152a measured with a vibrating wire viscometer , 1995 .

[44]  W. Wakeham,et al.  The viscosity of liquid R134a , 1993 .

[45]  E. Vogel,et al.  Gas-phase viscosity of the alternative refrigerant R134a at low densities , 1996 .

[46]  D. Morris,et al.  Viscosity Measurements of Ammonia, R32, and R134a. Vapor Buoyancy and Radial Acceleration in Capillary Viscometers , 1999 .

[47]  K. Stephan,et al.  Transport properties of 1,1,1,2-tetrafluoroethane (R134a) , 1993 .

[48]  Yoshiaki Tanaka,et al.  Thermal conductivity and viscosity of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) , 1996 .

[49]  C. Yokoyama,et al.  Viscosities of gaseous R13B1, R142b, and R152a , 1987 .

[50]  C. J. Pings,et al.  Viscosity of xenon and ethane in the critical region , 1974 .

[51]  A. Nagashima,et al.  Measurement of the viscosity of HCFC 123 in the temperature range 233–418 K and at pressures up to 20 MPa , 1992 .

[52]  F. Kurata,et al.  Liquid viscosities above the normal boiling point for methane, ethane, propane, and n‐butane , 1960 .

[53]  J. Dymond,et al.  Measurements of the viscosity of R134a and R32 in the temperature range 270–340 K at pressures up to 20 MPa , 1994 .

[54]  Marc J. Assael,et al.  Measurements of the viscosity of R11, R12, R141b, and R152a in the temperature range 270–340 K at pressures up to 20 MPa , 1994 .

[55]  A. Rocco,et al.  Intermolecular Potentials of Argon, Methane, and Ethane , 1958 .

[56]  William A. Wakeham,et al.  Validation of an accurate vibrating-wire densimeter: Density and viscosity of liquids over wide ranges of temperature and pressure , 1996 .

[57]  Giancarlo Scalabrin,et al.  A Viscosity Equation of State for R123 in the Form of a Multilayer Feedforward Neural Network , 2001 .

[58]  A. M. Robinson,et al.  Transport properties of gaseous hydrocarbons , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  M. L. Huber,et al.  A Predictive Extended Corresponding States Model for Pure and Mixed Refrigerants , 1990 .

[60]  J. D. Lambert,et al.  The viscosities of organic vapours , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[61]  G. Matthews,et al.  Gas viscosities and intermolecular interactions of replacement refrigerants HCFC 123 (2,2-dichloro-1,1,1-trifluoroethane), HCFC 124 (2-chloro-1,1,1,2-tetrafluoroethane) and HFC 134a (1,1,1,2-tetrafluoroethane) , 1993 .

[62]  S. Klein,et al.  An improved extended corresponding states method for estimation of viscosity of pure refrigerants and mixtures , 1997 .

[63]  J. G. Roof,et al.  Viscosity of Nitrogen, Methane, Ethane, and Propane at Elevated Temperature and Pressure. , 1959 .

[64]  W. Svrcek,et al.  Modified shape factors for improved viscosity predictions using corresponding states , 1991 .

[65]  Mark O. McLinden,et al.  An International Standard Equation of State for the Thermodynamic Properties of Refrigerant 123 (2,2‐Dichloro‐1,1,1‐Trifluoroethane) , 1994 .

[66]  G. Matthews,et al.  Viscosities of gaseous argon-hydrogen mixtures , 1989 .