A Symbiotic View of Life: We Have Never Been Individuals

The notion of the “biological individual” is crucial to studies of genetics, immunology, evolution, development, anatomy, and physiology. Each of these biological subdisciplines has a specific conception of individuality, which has historically provided conceptual contexts for integrating newly acquired data. During the past decade, nucleic acid analysis, especially genomic sequencing and high-throughput RNA techniques, has challenged each of these disciplinary definitions by finding significant interactions of animals and plants with symbiotic microorganisms that disrupt the boundaries that heretofore had characterized the biological individual. Animals cannot be considered individuals by anatomical or physiological criteria because a diversity of symbionts are both present and functional in completing metabolic pathways and serving other physiological functions. Similarly, these new studies have shown that animal development is incomplete without symbionts. Symbionts also constitute a second mode of genetic inheritance, providing selectable genetic variation for natural selection. The immune system also develops, in part, in dialogue with symbionts and thereby functions as a mechanism for integrating microbes into the animal-cell community. Recognizing the “holobiont”—the multicellular eukaryote plus its colonies of persistent symbionts—as a critically important unit of anatomy, development, physiology, immunology, and evolution opens up new investigative avenues and conceptually challenges the ways in which the biological subdisciplines have heretofore characterized living entities.

[1]  N. Moran,et al.  Sources of variation in dietary requirements in an obligate nutritional symbiosis , 2011, Proceedings of the Royal Society B: Biological Sciences.

[2]  R. Lewontin The Units of Selection , 1970, The Structure and Confirmation of Evolutionary Theory.

[3]  S. Mazmanian,et al.  Host-bacterial symbiosis in health and disease. , 2010, Advances in immunology.

[4]  A. Heddi,et al.  Antimicrobial Peptides Keep Insect Endosymbionts Under Control , 2011, Science.

[5]  Anurag A. Agrawal,et al.  Phenotypic Plasticity in the Interactions and Evolution of Species , 2001, Science.

[6]  S. Mazmanian,et al.  Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System? , 2010, Science.

[7]  T. Klaenhammer,et al.  Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid , 2011, Proceedings of the National Academy of Sciences.

[8]  J. Stephens,et al.  Models of mitochondrial DNA transmission genetics and evolution in higher eucaryotes. , 1982, Genetical research.

[9]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[10]  G. Adler,et al.  Commensal Gut Flora Drives the Expansion of Proinflammatory CD4 T Cells in the Colonic Lamina Propria under Normal and Inflammatory Conditions1 , 2008, The Journal of Immunology.

[11]  S. Gilbert Ecological developmental biology: developmental biology meets the real world. , 2001, Developmental biology.

[12]  B. Loppin,et al.  Parasitic inhibition of cell death facilitates symbiosis , 2007, Proceedings of the National Academy of Sciences.

[13]  L. Szekely,et al.  Correction: Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees , 2012, PLoS ONE.

[14]  J. Gordon,et al.  Molecular analysis of commensal host-microbial relationships in the intestine. , 2001, Science.

[15]  제임스 스코트 크라우,et al.  Production of Antibodies , 1942, Nature.

[16]  A. Douglas Experimental studies on the mycetome symbiosis in the leafhopper Euscelis incisus , 1988 .

[17]  S. Dobson,et al.  Wolbachia-based strategies to control insect pests and disease vectors , 2009 .

[18]  Alfred I. Tauber,et al.  The Immune System and Its Ecology* , 2008, Philosophy of Science.

[19]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[20]  Ruslan Medzhitov,et al.  Disease Tolerance as a Defense Strategy , 2012, Science.

[21]  A. Hoerauf,et al.  Doxycycline in the treatment of human onchocerciasis: Kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. , 2003, Microbes and infection.

[22]  G. Williams Adaptation and Natural Selection. (Book Reviews: Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought) , 2018 .

[23]  C. TEN UNORTHODOX PERSPECTIVES ON EVOLUTION PROMPTED BY COMPARATIVE POPULATION GENETIC FINDINGS ON MITOCHONDRIAL DNA , 2007 .

[24]  A. Tauber,et al.  Moving beyond the immune self? , 2000, Seminars in immunology.

[25]  박주홍,et al.  The Toll-Like Receptor 2 pathway Establishes Colonization by a Commensal of the Human Microbiota , 2011 .

[26]  Peter A. Ryan,et al.  A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium , 2009, Cell.

[27]  Jan Klein,et al.  Immunology: The science of self-nonself discrimination , 1982 .

[28]  Jeffrey I. Gordon,et al.  Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Yunheng Ji MORPHOLOGY , 1937, A Grammar of Italian Sign Language (LIS).

[30]  A. Macpherson,et al.  Interactions Between the Microbiota and the Immune System , 2012, Science.

[31]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[32]  J. Gordon,et al.  IgA response to symbiotic bacteria as a mediator of gut homeostasis. , 2007, Cell host & microbe.

[33]  T. Kaneko-Ishino,et al.  Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals , 2010, Development, growth & differentiation.

[34]  S. V. Nyholm,et al.  The role of the immune system in the initiation and persistence of the Euprymna scolopes--Vibrio fischeri symbiosis. , 2010, Seminars in immunology.

[35]  Vincent J. Lynch,et al.  Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. , 2012, Molecular biology and evolution.

[36]  Eugene Rosenberg,et al.  The role of microorganisms in coral health, disease and evolution , 2007, Nature Reviews Microbiology.

[37]  B. Makepeace,et al.  A worm's best friend: recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi , 2010, Proceedings of the Royal Society B: Biological Sciences.

[38]  H. M. Olivier,et al.  The effects of atrazine on spotted salamander embryos and their symbiotic alga , 2010, Ecotoxicology.

[39]  J. Nicholson,et al.  Host-Gut Microbiota Metabolic Interactions , 2012, Science.

[40]  J. Thomas,et al.  The ecology and conservation of Maculinea arion and other European species of large blue butterfly , 1995 .

[41]  D. Oderberg Sources of the Self: The Making of the Modern Identity , 1991 .

[42]  P. Turnbaugh,et al.  Is It Time for a Metagenomic Basis of Therapeutics? , 2012, Science.

[43]  John F. Cryan,et al.  Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve , 2011, Proceedings of the National Academy of Sciences.

[44]  P. Buchner Endosymbiosis of Animals with Plant Microorganisms , 1965 .

[45]  P. Turnbaugh,et al.  The core gut microbiome, energy balance and obesity , 2009, The Journal of physiology.

[46]  J. Gordon,et al.  Honor Thy Gut Symbionts Redux , 2012, Science.

[47]  C. Huttenhower,et al.  Host and gut microbiota symbiotic factors: lessons from inflammatory bowel disease and successful symbionts , 2011, Cellular microbiology.

[48]  J. Sapp Evolution by association : a history of symbiosis , 1994 .

[49]  L. Margulis,et al.  The beast with five genomes. , 2001 .

[50]  Wolfgang Haensch,et al.  Organisation , 1892, The Hospital.

[51]  Vincent J. Lynch,et al.  Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals , 2011, Nature Genetics.

[52]  J. Maynard Smith The units of selection. , 2021, Novartis Foundation symposium.

[53]  Ryan M. O’Connell,et al.  Coordination of tolerogenic immune responses by the commensal microbiota. , 2010, Journal of autoimmunity.

[54]  L. Szekely,et al.  Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees , 2012, PloS one.

[55]  S. Collins,et al.  Targeting the microbiota–gut–brain axis to modulate behavior: Which bacterial strain will translate best to humans? , 2012, Proceedings of the National Academy of Sciences.

[56]  Lynn Margulis,et al.  Symbiosis as a source of evolutionary innovation : speciation and morphogenesis , 1991 .

[57]  N. Saitou,et al.  Possible involvement of SINEs in mammalian-specific brain formation , 2008, Proceedings of the National Academy of Sciences.

[58]  D. Kasper,et al.  Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. , 2010, Cell host & microbe.

[59]  T. Maoka,et al.  Symbiotic Bacterium Modifies Aphid Body Color , 2010, Science.

[60]  A. Weismann The all-sufficiency of natural selection : a reply to Herbert Spencer , 1893 .

[61]  D. Hull Individuality and Selection , 1980 .

[62]  C. Lebrilla,et al.  Human milk glycobiome and its impact on the infant gastrointestinal microbiota , 2010, Proceedings of the National Academy of Sciences.

[63]  K. Takeda [Toll-like receptor]. , 2005, Nihon Rinsho Men'eki Gakkai kaishi = Japanese journal of clinical immunology.

[64]  J. Clemente,et al.  Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans , 2011, Science.

[65]  S. Richards,et al.  Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes , 2007, Science.

[66]  M. McFall-Ngai,et al.  The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. , 2012, Seminars in immunology.

[67]  M. Mulks,et al.  IgA protease production as a characteristic distinguishing pathogenic from harmless neisseriaceae. , 1978, The New England journal of medicine.

[68]  J. Gordon,et al.  Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[69]  O. Doumbo,et al.  A randomized trial of doxycycline for Mansonella perstans infection. , 2009, The New England journal of medicine.

[70]  S. Ram,et al.  Factor H and neisserial pathogenesis. , 2008, Vaccine.

[71]  Pavol Genzor,et al.  piRNAs, transposon silencing, and germline genome integrity. , 2011, Mutation research.

[72]  N. Gerardo,et al.  Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae , 2012, Biology Letters.

[73]  Lynn Margulis,et al.  Symbiosis in cell evolution: Life and its environment on the early earth , 1981 .

[74]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[75]  Eva Jablonka,et al.  Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , 2011 .

[76]  E. Lai,et al.  Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons , 2008, Current Biology.

[77]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[78]  A. D. Thomas,et al.  Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix , 2009, Journal of evolutionary biology.

[79]  D. Relman,et al.  The Application of Ecological Theory Toward an Understanding of the Human Microbiome , 2012, Science.

[80]  G. Eberl A new vision of immunity: homeostasis of the superorganism , 2010, Mucosal Immunology.

[81]  N. King,et al.  Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. , 2011, Developmental biology.

[82]  D. Segal,et al.  Commensal bacteria play a role in mating preference of Drosophila melanogaster , 2010, Proceedings of the National Academy of Sciences.

[83]  Thomas Pradeu,et al.  What is an organism? An immunological answer. , 2010, History and philosophy of the life sciences.

[84]  H. Forssberg,et al.  Normal gut microbiota modulates brain development and behavior , 2011, Proceedings of the National Academy of Sciences.

[85]  M. Sakamoto,et al.  Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis , 2010, Proceedings of the National Academy of Sciences.

[86]  J. Sapp The New Foundations of Evolution: On the Tree of Life , 2009 .

[87]  F. Burnet,et al.  The production of antibodies , 1949 .

[88]  J. Werren,et al.  Heritable Microorganisms and Reproductive Parasitism. , 2004 .

[89]  Jeffrey I. Gordon,et al.  Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection , 2006, Cell.

[90]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[91]  Sharon I. Greenblum,et al.  Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease , 2011, Proceedings of the National Academy of Sciences.

[92]  Sander L. Gilman,et al.  The Immune Self: Theory or Metaphor? , 1996 .

[93]  David P. Edwards The Symbiotic Habit , 2011 .

[94]  R E Michod,et al.  Transitions in individuality , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[95]  M. Ashburner,et al.  The Bacterial Symbiont Wolbachia Induces Resistance to RNA Viral Infections in Drosophila melanogaster , 2008, PLoS biology.

[96]  Lynn Margulis,et al.  The Colonization Hypothesis. (Book Reviews: Origin of Eukaryotic Cells. Evidence and Research Implications for a Theory of the Origin and Evolution of Microbial, Plant, and Animal Cells on the Precambrian Earth) , 1970 .

[97]  G. Thomas,et al.  Genetic and metabolic determinants of nutritional phenotype in an insect–bacterial symbiosis , 2011, Molecular ecology.

[98]  John Hall Spirochete contributions to the eukaryotic genome , 2011, Symbiosis.

[99]  M. W. Taylor,et al.  Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential , 2007, Microbiology and Molecular Biology Reviews.

[100]  R. J. Pool,et al.  Plant Succession. An Analysis of the Development of Vegetation , 1917 .

[101]  Scott F. Gilbert,et al.  Ecological Developmental Biology , 2017 .

[102]  J. McCutcheon,et al.  An Interdependent Metabolic Patchwork in the Nested Symbiosis of Mealybugs , 2011, Current Biology.

[103]  N. Moran,et al.  Aphid Thermal Tolerance Is Governed by a Point Mutation in Bacterial Symbionts , 2007, PLoS biology.

[104]  E. Leigh,et al.  The group selection controversy , 2010 .

[105]  N. Moran,et al.  Molecular Interactions between Bacterial Symbionts and Their Hosts , 2006, Cell.

[106]  Stephen C Stearns,et al.  ARE WE STALLED PART WAY THROUGH A MAJOR EVOLUTIONARY TRANSITION FROM INDIVIDUAL TO GROUP? , 2007, Evolution; international journal of organic evolution.

[107]  B. Charlesworth Levels of Selection in Evolution , 2000, Heredity.

[108]  M. Busch,et al.  Molecular analysis of the , 1996 .

[109]  G. Michel,et al.  Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota , 2010, Nature.

[110]  S. Aksoy,et al.  Obligate Symbionts Activate Immune System Development in the Tsetse Fly , 2012, The Journal of Immunology.

[111]  Patrick Forber Evolution and the Levels of Selection , 2008 .

[112]  Jennifer M. Bates,et al.  Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. , 2006, Developmental biology.

[113]  A. Driks,et al.  Role of Commensal Bacteria in Development of Gut-Associated Lymphoid Tissues and Preimmune Antibody Repertoire1 , 2004, The Journal of Immunology.

[114]  Keith R. Oliver,et al.  Transposable elements: powerful facilitators of evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[115]  K. Rhee,et al.  Intestinal bacteria and development of the B-lymphocyte repertoire. , 2005, Trends in immunology.

[116]  G. Bourque,et al.  Transposable elements have rewired the core regulatory network of human embryonic stem cells , 2010, Nature Genetics.

[117]  S. Gilbert The Genome in Its Ecological Context , 2002, Annals of the New York Academy of Sciences.

[118]  T. Bosch,et al.  Why bacteria matter in animal development and evolution , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[119]  J. Sapp Paul Buchner (1886–1978) and hereditary symbiosis in insects , 2002, International microbiology : the official journal of the Spanish Society for Microbiology.

[120]  Thomas Pradeu,et al.  A Mixed Self: The Role of Symbiosis in Development , 2011 .

[121]  R. Medzhitov,et al.  Germs gone wild , 2012, Nature Medicine.

[122]  S. Gilbert,et al.  Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[123]  E. Rosenberg,et al.  Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. , 2008, FEMS microbiology reviews.

[124]  N. Moran,et al.  Bacteriophages Encode Factors Required for Protection in a Symbiotic Mutualism , 2009, Science.

[125]  A. Tauber Expanding Immunology: defensive versus ecological perspectives , 2008 .

[126]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[127]  Vincent J. Denef,et al.  Strain-resolved community genomic analysis of gut microbial colonization in a premature infant , 2010, Proceedings of the National Academy of Sciences.

[128]  Callen Hyland,et al.  Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution , 2009, The Yale Journal of Biology and Medicine.

[129]  M. Batzer,et al.  The impact of retrotransposons on human genome evolution , 2009, Nature Reviews Genetics.

[130]  R. Knight,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[131]  J. Boomsma,et al.  A Mosaic of Chemical Coevolution in a Large Blue Butterfly , 2008, Science.

[132]  S. Lidgard,et al.  Individuals at the Center of Biology: Rudolf Leuckart’s Polymorphismus der Individuen and the Ongoing Narrative of Parts and Wholes. With an Annotated Translation , 2011, Journal of the history of biology.

[133]  E. Herre,et al.  Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. , 2007, Ecology.

[134]  Charles Taylor Sources of the Self: The Making of the Modern Identity , 1990 .

[135]  C. Buchheit,et al.  The regulation of cancer cell death and metabolism by extracellular matrix attachment. , 2012, Seminars in cell & developmental biology.

[136]  R. Ley,et al.  Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine , 2006, Cell.

[137]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[138]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[139]  M. McFall-Ngai Unseen forces: the influence of bacteria on animal development. , 2002, Developmental biology.

[140]  T. Chatila,et al.  The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota , 2011, Science.

[141]  J. Cryan,et al.  The microbiome‐gut‐brain axis: from bowel to behavior , 2011, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[142]  D. Kamra Rumen microbial ecosystem , 2005 .

[143]  J. Bakken,et al.  Treating Clostridium difficile infection with fecal microbiota transplantation. , 2011, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[144]  J. Avise Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA. , 1991, Annual review of genetics.

[145]  Ellen Clarke,et al.  The Problem of Biological Individuality , 2010 .

[146]  N. Moran,et al.  Colloquium Papers: Symbiosis as an adaptive process and source of phenotypic complexity , 2007 .

[147]  Jan Sapp,et al.  Genesis: The Evolution of Biology , 2003 .

[148]  D. S. Wilson,et al.  EIGHT CRITICISMS NOT TO MAKE ABOUT GROUP SELECTION , 2011, Evolution; international journal of organic evolution.

[149]  B. Hall,et al.  Intracellular invasion of green algae in a salamander host , 2011, Proceedings of the National Academy of Sciences.

[150]  F. Bushman,et al.  Commensal bacterial–derived signals regulate basophil hematopoiesis and allergic inflammation , 2012, Nature Medicine.

[151]  L. Sagan On the origin of mitosing cells , 1967, Journal of theoretical biology.

[152]  Jan Sapp,et al.  Microbial Phylogeny and Evolution: concepts and controversies. , 2004 .

[153]  C. Limoges Milne-Edwards, Darwin, Durkheim and the Division of Labour: A Case Study in Reciprocal Conceptual Exchanges between the Social and the Natural Sciences , 1994 .

[154]  Hyman Hartman,et al.  The origin of the eukaryotic cell: A genomic investigation , 2002, Proceedings of the National Academy of Sciences of the United States of America.