Functional Regression for State Prediction Using Linear PDE Models and Observations

Partial differential equations (PDEs) are commonly used to model a wide variety of physical phenomena. A PDE model of a physical problem is typically described by conservation laws, constitutive laws, material properties, boundary conditions, boundary data, and geometry. In most practical applications, however, the PDE model is only an approximation to the real physical problem due to both (i) the deliberate mathematical simplification of the model to keep it tractable and (ii) the inherent uncertainty of the physical parameters. In such cases, the PDE model may not produce a good prediction of the true state of the underlying physical problem. In this paper, we introduce a functional regression method that incorporates observations into a deterministic linear PDE model to improve its prediction of the true state. Our method is devised as follows. First, we augment the PDE model with a random Gaussian functional which serves to represent various sources of uncertainty in the model. We next derive a linear...

[1]  J. Peraire,et al.  Gaussian functional regression for linear partial differential equations , 2015 .

[2]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[3]  Thomas J. R. Hughes,et al.  Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains , 1992 .

[4]  J. Peraire,et al.  A ‘best points’ interpolation method for efficient approximation of parametrized functions , 2008 .

[5]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[6]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[7]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[8]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[9]  John R. Wolberg,et al.  Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments , 2005 .

[10]  Albert Cohen,et al.  On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.

[11]  M. Rumpfkeil,et al.  Design Optimization Utilizing Gradient/Hessian Enhanced Surrogate Model , 2010 .

[12]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[13]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[14]  Karen Willcox,et al.  Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[15]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[16]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[17]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[18]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[19]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[20]  P. Sagaut,et al.  Building Efficient Response Surfaces of Aerodynamic Functions with Kriging and Cokriging , 2008 .

[21]  J. Alonso,et al.  Using gradients to construct cokriging approximation models for high-dimensional design optimization problems , 2002 .

[22]  Dongbin Xiu,et al.  Numerical approach for quantification of epistemic uncertainty , 2010, J. Comput. Phys..

[23]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[24]  H. Elman,et al.  DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .

[25]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[26]  K. Willcox Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[27]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[28]  Anthony T. Patera,et al.  Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data , 2012 .

[29]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[30]  A. O'Hagan,et al.  Curve Fitting and Optimal Design for Prediction , 1978 .

[31]  M. Eldred,et al.  The promise and peril of uncertainty quantification using response surface approximations , 2005 .

[32]  A. Lorenc A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .

[33]  Pierre F. J. Lermusiaux,et al.  Data Assimilation with Gaussian Mixture Models Using the Dynamically Orthogonal Field Equations. Part I: Theory and Scheme , 2013 .

[34]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[35]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[36]  Juan J. Alonso,et al.  Using Gradients to Construct Response Surface Models for High-Dimensional Design Optimization Problems , 2001 .

[37]  L. M. Berliner,et al.  A Bayesian tutorial for data assimilation , 2007 .

[38]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[39]  Rémi Bardenet,et al.  Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[40]  Anthony T. Patera,et al.  A model-data weak formulation for simultaneous estimation of state and model bias , 2013 .

[41]  Weiyu Liu,et al.  Gradient-Enhanced Response Surface Approximations Using Kriging Models , 2002 .

[42]  Zhonghua Han,et al.  Efficient Uncertainty Quantification using Gradient-Enhanced Kriging , 2009 .

[43]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[44]  Ionel M. Navon,et al.  Optimality of variational data assimilation and its relationship with the Kalman filter and smoother , 2001 .