Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials

In this paper, we consider an optimal bilinear control problem for the Gross-Pitaevskii equations with Coulombian potentials. We show the well-posedness of the problem and the existence of an optimal control. In addition, the first order optimality system is rigorously derived. In particular, we prove the Frechet-differentiability of the unconstrained functional. We extend the study of Hintermuller et al. (2013) [15] to more general power nonlinearities and unbounded potentials. (C) 2015 Elsevier Inc. All rights reserved.

[1]  Julien Salomon,et al.  Constructive solution of a bilinear optimal control problem for a Schrödinger equation , 2008, Syst. Control. Lett..

[2]  D. Fujiwara Remarks on convergence of the Feynman path integrals , 1980 .

[3]  M. Zworski,et al.  Geometric control in the presence of a black box , 2004 .

[4]  Elaine Machtyngier,et al.  Exact Controllability for the Schrodinger Equation , 1994 .

[5]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[6]  Camille Laurent,et al.  Global Controllability and Stabilization for the Nonlinear Schrödinger Equation on Some Compact Manifolds of Dimension 3 , 2009, SIAM J. Math. Anal..

[7]  Lucie Baudouin A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics , 2006 .

[8]  Irena Lasiecka,et al.  Well-posedness and sharp uniform decay rates at the L2(Ω)-Level of the Schrödinger equation with nonlinear boundary dissipation , 2006 .

[9]  J. L. Lions,et al.  Control of Systems Governed by Parabolic Partial Differential Equations , 1971 .

[10]  Thierry Cazenave,et al.  A Schrödinger equation with time-oscillating nonlinearity , 2010 .

[11]  R. Triggiani,et al.  Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. Part II: L 2(Ω)-estimates , 2004 .

[12]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[13]  M. C. Delfour,et al.  Dynamical free boundary problem for an incompressible potential fluid flow in a time-varying domain , 2004 .

[14]  Tosio Kato,et al.  On nonlinear Schrödinger equations , 1987 .

[15]  R. Triggiani,et al.  Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control , 1992, Differential and Integral Equations.

[16]  Herschel Rabitz,et al.  Nonadiabatic control of Bose-Einstein condensation in optical traps , 1999 .

[17]  A. Borzì,et al.  Optimal quantum control of Bose-Einstein condensates in magnetic microtraps , 2007, quant-ph/0701094.

[18]  Martin Holthaus,et al.  Towards coherent control of a Bose-Einstein condensate in a double well , 2001 .

[19]  Michael Hintermüller,et al.  Optimal Bilinear Control of Gross-Pitaevskii Equations , 2012, SIAM J. Control. Optim..

[20]  Kazufumi Ito,et al.  Optimal Bilinear Control of an Abstract Schrödinger Equation , 2007, SIAM J. Control. Optim..

[21]  Lionel Rosier,et al.  Exact boundary controllability of the nonlinear Schrödinger equation , 2009 .

[22]  R. Triggiani Exact Controllability in L 2 (Ω) of the Schrödinger Equation in a Riemannian Manifold with L 2 (Σ 1 )-Neumann Boundary Control , 2007 .

[23]  Lucie Baudouin,et al.  Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control , 2005 .

[24]  P. Mason,et al.  Generic Controllability Properties for the Bilinear Schrödinger Equation , 2009 .

[25]  Lin Zhao,et al.  Stability for the time-dependent Hartree equation with positive energy , 2010 .

[26]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[27]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[28]  V. Nersesyan Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.

[29]  R'emi Carles,et al.  Nonlinear Schrodinger equation with time dependent potential , 2009, 0910.4893.

[30]  Lionel Rosier,et al.  Local Exact Controllability and Stabilizability of the Nonlinear Schrödinger Equation on a Bounded Interval , 2009, SIAM J. Control. Optim..

[31]  Karine Beauchard,et al.  Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.

[32]  J. Coron Control and Nonlinearity , 2007 .