PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses

The hydrogen-poor supernova (SN) PTF11rka (z = 0.0744), reported by the Palomar Transient Factory, was observed with various telescopes starting a few days after the estimated explosion time of 2011 December 5 UT and up to 432 rest-frame days thereafter. The rising part of the light curve was monitored only in the RPTF filter band, and maximum in this band was reached ∼30 rest-frame days after the estimated explosion time. The light curve and spectra of PTF11rka are consistent with the core-collapse explosion of a ∼10 M⊙ carbon–oxygen core evolved from a progenitor of main-sequence mass 25–40 M⊙, that liberated a kinetic energy Ek≈4 × 1051 erg, expelled ∼8 M⊙ of ejecta, and synthesized ∼0.5 M⊙ of 56Ni. The photospheric spectra of PTF11rka are characterized by narrow absorption lines that point to suppression of the highest ejecta velocities (≳ 15 000 km s−1). This would be expected if the ejecta impacted a dense, clumpy circumstellar medium. This in turn caused them to lose a fraction of their energy (∼5 × 1050 erg), less than 2 per cent of which was converted into radiation that sustained the light curve before maximum brightness. This is reminiscent of the superluminous SN 2007bi, the light-curve shape and spectra of which are very similar to those of PTF11rka, although the latter is a factor of 10 less luminous and evolves faster in time. PTF11rka is in fact more similar to gamma-ray burst SNe in luminosity, although it has a lower energy and a lower Ek/Mej ratio.

[1]  J. Hjorth,et al.  The Carnegie Supernova Project II , 2019, Astronomy & Astrophysics.

[2]  M. Graham,et al.  Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient , 2019, The Astrophysical Journal.

[3]  D. Perley Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.

[4]  P. Mazzali,et al.  Synthetic spectra of energetic core-collapse supernovae and the early spectra of SN 2007bi and SN 1999as , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  S. Woosley,et al.  The nature of PISN candidates: clues from nebular spectra , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  A. Gal-yam The Most Luminous Supernovae , 2018, Annual Review of Astronomy and Astrophysics.

[7]  J. Sollerman,et al.  The luminous late-time emission of the type-Ic supernova iPTF15dtg – evidence for powering from a magnetar? , 2018, Astronomy & Astrophysics.

[8]  R. Lupton,et al.  First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). I. Photometric Properties , 2018, The Astrophysical Journal Supplement Series.

[9]  A. Castro-Tirado,et al.  GRB 161219B/SN 2016jca: a powerful stellar collapse , 2017, Monthly Notices of the Royal Astronomical Society.

[10]  D. A. Kann,et al.  Highly luminous supernovae associated with gamma-ray bursts , 2016, Astronomy & Astrophysics.

[11]  K. Maguire,et al.  Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  Wei Zheng,et al.  The Berkeley sample of stripped-envelope supernovae , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  Z. Dai,et al.  A Multiple Ejecta-circumstellar Medium Interaction Model and Its Implications for Superluminous Supernovae iPTF15esb and iPTF13dcc , 2018, 1802.08164.

[14]  E. Ofek,et al.  Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2017, The Astrophysical Journal.

[15]  David O. Jones,et al.  Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.

[16]  P. Vreeswijk,et al.  iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.

[17]  Cambridge,et al.  Modelling the Type Ic SN 2004aw: a moderately energetic explosion of a massive C+O star without a GRB , 2017, 1705.10249.

[18]  P. Mazzali,et al.  A physically motivated classification of stripped-envelope supernovae , 2017, 1704.06635.

[19]  R. Kotak,et al.  The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system , 2016, 1611.09910.

[20]  G Risaliti,et al.  Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C , 2016, The Astrophysical journal.

[21]  E. Pian,et al.  Hydrogen-Poor Core-Collapse Supernovae , 2017 .

[22]  P. Murdin,et al.  Handbook of Supernovae , 2017 .

[23]  A. Gal-yam Observational and Physical Classification of Supernovae , 2016, 1611.09353.

[24]  O. Graur,et al.  Revisiting the Lick Observatory Supernova Search Volume-limited Sample: Updated Classifications and Revised Stripped-envelope Supernova Fractions , 2016, 1609.02922.

[25]  K. Maguire,et al.  LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES , 2016, 1608.02994.

[26]  P. Vreeswijk,et al.  iPTF15dtg: a double-peaked Type Ic Supernova from a massive progenitor , 2016, 1605.02491.

[27]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[28]  K. Maguire,et al.  SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.

[29]  J. Sollerman,et al.  The bolometric light curves and physical parameters of stripped-envelope supernovae , 2016, 1602.01736.

[30]  S. Smartt,et al.  Nebular spectra of pair-instability supernovae , 2015, 1510.02698.

[31]  O. Graur,et al.  ANALYZING THE LARGEST SPECTROSCOPIC DATA SET OF STRIPPED SUPERNOVAE TO IMPROVE THEIR IDENTIFICATIONS AND CONSTRAIN THEIR PROGENITORS , 2015, 1510.08049.

[32]  B. Metzger,et al.  The diversity of transients from magnetar birth in core collapse supernovae , 2015, 1508.02712.

[33]  D. A. Kann,et al.  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[34]  Ipmu,et al.  Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core , 2015, 1504.04857.

[35]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[36]  E. Ofek,et al.  The rising light curves of Type Ia supernovae , 2014, 1411.1064.

[37]  R. Kotak,et al.  The host galaxy and late-time evolution of the superluminous supernova PTF12dam , 2014, 1409.7728.

[38]  M. Sullivan,et al.  Superluminous supernovae from PESSTO , 2014, 1405.1325.

[39]  Carl J. Grillmair,et al.  IPAC Image Processing and Data Archiving for the Palomar Transient Factory , 2014, 1404.1953.

[40]  M. Phillips,et al.  SN 2011hs: a fast and faint Type IIb supernova from a supergiant progenitor , 2014, 1401.2368.

[41]  A. Pastorello,et al.  Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.

[42]  D. Kasen,et al.  Nebular spectroscopy of the nearby Type IIb supernova 2011dh , 2013, 1307.2246.

[43]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[44]  R. Kirshner,et al.  SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS , 2013, 1304.0095.

[45]  P. Mazzali,et al.  Spectral modelling of the ‘super-Chandrasekhar’ Type Ia SN 2009dc – testing a 2 M⊙ white dwarf explosion model and alternatives , 2012, 1209.1339.

[46]  R. C. Dixon,et al.  DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY , 2012, 1208.5900.

[47]  H. Janka Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.

[48]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[49]  R. Kotak,et al.  A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR , 2012, 1203.1933.

[50]  M. Sullivan,et al.  The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.

[51]  W. M. Wood-Vasey,et al.  Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.

[52]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[53]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[54]  Las Cumbres Observatory Global Telescope Network,et al.  ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.

[55]  R. Kotak,et al.  The Type Ic SN 2007gr: a census of the ejecta from late-time optical–infrared spectra , 2010, 1006.4259.

[56]  K. Nomoto,et al.  A CORE-COLLAPSE SUPERNOVA MODEL FOR THE EXTREMELY LUMINOUS TYPE Ic SUPERNOVA 2007bi: AN ALTERNATIVE TO THE PAIR-INSTABILITY SUPERNOVA MODEL , 2010, 1004.2967.

[57]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[58]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[59]  D. Bersier,et al.  Two type Ic supernovae in low-metallicity, dwarf galaxies: Diversity of explosions , 2009, 0910.2248.

[60]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[61]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[62]  Ricardo Covarrubias,et al.  THE HE-RICH CORE-COLLAPSE SUPERNOVA 2007Y: OBSERVATIONS FROM X-RAY TO RADIO WAVELENGTHS , 2009, 0902.0609.

[63]  R. Foley,et al.  The Aspherical Properties of the Energetic Type Ic SN 2002ap as Inferred from Its Nebular Spectra , 2007, 0708.0966.

[64]  J. Bloom,et al.  Keck and European Southern Observatory Very Large Telescope View of the Symmetry of the Ejecta of the XRF/SN 2006aj , 2007 .

[65]  J. Bloom,et al.  Keck and ESO-VLT View of the Symmetry of the Ejecta of the XRF/SN 2006aj , 2007, astro-ph/0703109.

[66]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[67]  R. Kotak,et al.  SN 2004aw: confirming diversity of Type Ic supernovae , 2006, astro-ph/0607078.

[68]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[69]  J. Neill,et al.  Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.

[70]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[71]  P. A. Mazzali,et al.  The Nebular Spectra of the Hypernova SN 1998bw and Evidence for Asymmetry , 2001, astro-ph/0106095.

[72]  Filippo Frontera,et al.  Accepted for publication in the Astrophysical Journal 2001, v. 555 Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE METAMORPHOSIS OF SN 1998BW ‡ , 1999 .

[73]  P. Mazzali,et al.  Can Differences in the Nickel Abundance in Chandrasekhar-Mass Models Explain the Relation between the Brightness and Decline Rate of Normal Type Ia Supernovae? , 2000, astro-ph/0009490.

[74]  P. Mazzali,et al.  Light Curve and Spectral Models for the Hypernova SN 1998bw Associated with GRB 980425 , 2000, astro-ph/0007010.

[75]  P. Mazzali,et al.  A Spectroscopic Analysis of the Energetic Type Ic Hypernova SN 1997ef , 2000, astro-ph/0007222.

[76]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[77]  J. Hjorth,et al.  The Supernova-Gamma-Ray Burst Connection , 1998, astro-ph/9806212.

[78]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[79]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[80]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[81]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[82]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[83]  K. Nomoto,et al.  Presupernova evolution of massive stars , 1988 .

[84]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .