PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses
暂无分享,去创建一个
Tucson | Mitaka | Tokyo | Berkeley | Garching | Caltech | Univ. of California | Nijmegen | H Germany | E. Ofek | Italy. | S. O. Physics | Australia. | D. Astronomy | D. Perley | E. Pian | P. Nugent | M. Kasliwal | S. Kulkarni | I. Arcavi | T. Matheson | A. Gal-yam | P. Mazzali | A. Filippenko | R. Lunnan | N. Blagorodnova | A. Gal-Yam | S. Prentice | O. Yaron | Eső | Naoj | F. Bufano | S. Ben-Ami | A. Rubin | The Netherlands. | Ari | Mpa | Trinity College Dublin | T. Moriya | Liverpool John Moores Univ. | Weizmann Institute of Science | I. Manulis | T. Univ. | A. Rubin | S. Ben-Ami | NSF's National Optical-Infrared Astronomy Research Laboratory | Canada | Israel | Miller Senior Fellow | Astronomy | C. C. F. Astrophysics | S. Kulkarni | M. Kasliwal | S. Univ. | U. California | Inaf - Catania | Radboud Univ. | M. Bufano | Monash Univ. | Cahill Center for Astrophysics | Harvard-Smithsonian Cfa | B. C. F. Astrophysics | A. Filippenko | S. Kulkarni | L. B. N. Laboratory | O. K. C. -. Astronomy | Ofer Yaron INAF-OAS Bologna | Cifar | Dept of AstrophysicsIMAPP | The University of Dublin
[1] J. Hjorth,et al. The Carnegie Supernova Project II , 2019, Astronomy & Astrophysics.
[2] M. Graham,et al. Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient , 2019, The Astrophysical Journal.
[3] D. Perley. Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.
[4] P. Mazzali,et al. Synthetic spectra of energetic core-collapse supernovae and the early spectra of SN 2007bi and SN 1999as , 2019, Monthly Notices of the Royal Astronomical Society.
[5] S. Woosley,et al. The nature of PISN candidates: clues from nebular spectra , 2019, Monthly Notices of the Royal Astronomical Society.
[6] A. Gal-yam. The Most Luminous Supernovae , 2018, Annual Review of Astronomy and Astrophysics.
[7] J. Sollerman,et al. The luminous late-time emission of the type-Ic supernova iPTF15dtg – evidence for powering from a magnetar? , 2018, Astronomy & Astrophysics.
[8] R. Lupton,et al. First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). I. Photometric Properties , 2018, The Astrophysical Journal Supplement Series.
[9] A. Castro-Tirado,et al. GRB 161219B/SN 2016jca: a powerful stellar collapse , 2017, Monthly Notices of the Royal Astronomical Society.
[10] D. A. Kann,et al. Highly luminous supernovae associated with gamma-ray bursts , 2016, Astronomy & Astrophysics.
[11] K. Maguire,et al. Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? , 2018, Monthly Notices of the Royal Astronomical Society.
[12] Wei Zheng,et al. The Berkeley sample of stripped-envelope supernovae , 2018, Monthly Notices of the Royal Astronomical Society.
[13] Z. Dai,et al. A Multiple Ejecta-circumstellar Medium Interaction Model and Its Implications for Superluminous Supernovae iPTF15esb and iPTF13dcc , 2018, 1802.08164.
[14] E. Ofek,et al. Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2017, The Astrophysical Journal.
[15] David O. Jones,et al. Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.
[16] P. Vreeswijk,et al. iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.
[17] Cambridge,et al. Modelling the Type Ic SN 2004aw: a moderately energetic explosion of a massive C+O star without a GRB , 2017, 1705.10249.
[18] P. Mazzali,et al. A physically motivated classification of stripped-envelope supernovae , 2017, 1704.06635.
[19] R. Kotak,et al. The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system , 2016, 1611.09910.
[20] G Risaliti,et al. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C , 2016, The Astrophysical journal.
[21] E. Pian,et al. Hydrogen-Poor Core-Collapse Supernovae , 2017 .
[22] P. Murdin,et al. Handbook of Supernovae , 2017 .
[23] A. Gal-yam. Observational and Physical Classification of Supernovae , 2016, 1611.09353.
[24] O. Graur,et al. Revisiting the Lick Observatory Supernova Search Volume-limited Sample: Updated Classifications and Revised Stripped-envelope Supernova Fractions , 2016, 1609.02922.
[25] K. Maguire,et al. LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES , 2016, 1608.02994.
[26] P. Vreeswijk,et al. iPTF15dtg: a double-peaked Type Ic Supernova from a massive progenitor , 2016, 1605.02491.
[27] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[28] K. Maguire,et al. SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.
[29] J. Sollerman,et al. The bolometric light curves and physical parameters of stripped-envelope supernovae , 2016, 1602.01736.
[30] S. Smartt,et al. Nebular spectra of pair-instability supernovae , 2015, 1510.02698.
[31] O. Graur,et al. ANALYZING THE LARGEST SPECTROSCOPIC DATA SET OF STRIPPED SUPERNOVAE TO IMPROVE THEIR IDENTIFICATIONS AND CONSTRAIN THEIR PROGENITORS , 2015, 1510.08049.
[32] B. Metzger,et al. The diversity of transients from magnetar birth in core collapse supernovae , 2015, 1508.02712.
[33] D. A. Kann,et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.
[34] Ipmu,et al. Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core , 2015, 1504.04857.
[35] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[36] E. Ofek,et al. The rising light curves of Type Ia supernovae , 2014, 1411.1064.
[37] R. Kotak,et al. The host galaxy and late-time evolution of the superluminous supernova PTF12dam , 2014, 1409.7728.
[38] M. Sullivan,et al. Superluminous supernovae from PESSTO , 2014, 1405.1325.
[39] Carl J. Grillmair,et al. IPAC Image Processing and Data Archiving for the Palomar Transient Factory , 2014, 1404.1953.
[40] M. Phillips,et al. SN 2011hs: a fast and faint Type IIb supernova from a supergiant progenitor , 2014, 1401.2368.
[41] A. Pastorello,et al. Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.
[42] D. Kasen,et al. Nebular spectroscopy of the nearby Type IIb supernova 2011dh , 2013, 1307.2246.
[43] A. Pastorello,et al. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.
[44] R. Kirshner,et al. SN 2012au: A GOLDEN LINK BETWEEN SUPERLUMINOUS SUPERNOVAE AND THEIR LOWER-LUMINOSITY COUNTERPARTS , 2013, 1304.0095.
[45] P. Mazzali,et al. Spectral modelling of the ‘super-Chandrasekhar’ Type Ia SN 2009dc – testing a 2 M⊙ white dwarf explosion model and alternatives , 2012, 1209.1339.
[46] R. C. Dixon,et al. DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY , 2012, 1208.5900.
[47] H. Janka. Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.
[48] A. Gal-yam,et al. WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.
[49] R. Kotak,et al. A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR , 2012, 1203.1933.
[50] M. Sullivan,et al. The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.
[51] W. M. Wood-Vasey,et al. Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.
[52] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[53] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[54] Las Cumbres Observatory Global Telescope Network,et al. ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.
[55] R. Kotak,et al. The Type Ic SN 2007gr: a census of the ejecta from late-time optical–infrared spectra , 2010, 1006.4259.
[56] K. Nomoto,et al. A CORE-COLLAPSE SUPERNOVA MODEL FOR THE EXTREMELY LUMINOUS TYPE Ic SUPERNOVA 2007bi: AN ALTERNATIVE TO THE PAIR-INSTABILITY SUPERNOVA MODEL , 2010, 1004.2967.
[57] S. Woosley. BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.
[58] M. Sullivan,et al. Supernova 2007bi as a pair-instability explosion , 2009, Nature.
[59] D. Bersier,et al. Two type Ic supernovae in low-metallicity, dwarf galaxies: Diversity of explosions , 2009, 0910.2248.
[60] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[61] Oxford,et al. Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.
[62] Ricardo Covarrubias,et al. THE HE-RICH CORE-COLLAPSE SUPERNOVA 2007Y: OBSERVATIONS FROM X-RAY TO RADIO WAVELENGTHS , 2009, 0902.0609.
[63] R. Foley,et al. The Aspherical Properties of the Energetic Type Ic SN 2002ap as Inferred from Its Nebular Spectra , 2007, 0708.0966.
[64] J. Bloom,et al. Keck and European Southern Observatory Very Large Telescope View of the Symmetry of the Ejecta of the XRF/SN 2006aj , 2007 .
[65] J. Bloom,et al. Keck and ESO-VLT View of the Symmetry of the Ejecta of the XRF/SN 2006aj , 2007, astro-ph/0703109.
[66] E. Wright. A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.
[67] R. Kotak,et al. SN 2004aw: confirming diversity of Type Ic supernovae , 2006, astro-ph/0607078.
[68] S. Woosley,et al. The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.
[69] J. Neill,et al. Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.
[70] Chris L. Fryer,et al. How Massive Single Stars End Their Life , 2002, astro-ph/0212469.
[71] P. A. Mazzali,et al. The Nebular Spectra of the Hypernova SN 1998bw and Evidence for Asymmetry , 2001, astro-ph/0106095.
[72] Filippo Frontera,et al. Accepted for publication in the Astrophysical Journal 2001, v. 555 Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE METAMORPHOSIS OF SN 1998BW ‡ , 1999 .
[73] P. Mazzali,et al. Can Differences in the Nickel Abundance in Chandrasekhar-Mass Models Explain the Relation between the Brightness and Decline Rate of Normal Type Ia Supernovae? , 2000, astro-ph/0009490.
[74] P. Mazzali,et al. Light Curve and Spectral Models for the Hypernova SN 1998bw Associated with GRB 980425 , 2000, astro-ph/0007010.
[75] P. Mazzali,et al. A Spectroscopic Analysis of the Energetic Type Ic Hypernova SN 1997ef , 2000, astro-ph/0007222.
[76] M. C. Begam,et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.
[77] J. Hjorth,et al. The Supernova-Gamma-Ray Burst Connection , 1998, astro-ph/9806212.
[78] Alexei V. Filippenko,et al. Optical spectra of supernovae , 1997 .
[79] A. Kinney,et al. Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .
[80] Molefe Mokoene,et al. The Messenger , 1995, Outrageous Fortune.
[81] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .
[82] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[83] K. Nomoto,et al. Presupernova evolution of massive stars , 1988 .
[84] A. V. Filippenko,et al. THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .