Quantum models of Parrondo's games

A Parrondo's paradox is an effect where two losing games, when combined, can produce a net winning result. We provide a short introduction to quantum versions of Parrondo's games and review the current status of the work.

[1]  Jiangfeng Du,et al.  Experimental realization of quantum games on a quantum computer. , 2001, Physical Review Letters.

[2]  Derek Abbott,et al.  Parrondo's paradox , 1999 .

[3]  Abbott,et al.  New paradoxical games based on brownian ratchets , 2000, Physical review letters.

[4]  Neil F Johnson,et al.  Winning combinations of history-dependent games. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Hui Li,et al.  Nash Equilibrium in the Quantum Battle of Sexes Game , 2000 .

[6]  Luca Marinatto,et al.  A quantum approach to static games of complete information , 2000 .

[7]  Simon C. Benjamin,et al.  Multiplayer quantum games , 2001 .

[8]  David A. Meyer QUANTUM MECHANICS OF LATTICE GAS AUTOMATA : ONE-PARTICLE PLANE WAVES AND POTENTIALS , 1997 .

[9]  David A. Meyer,et al.  Parrondo Games as Lattice Gas Automata , 2001 .

[10]  P. Hayden,et al.  Comment on "quantum games and quantum strategies". , 2000, Physical Review Letters.

[11]  R. Toral Cooperative Parrondo's Games , 2001 .

[12]  Azhar Iqbal,et al.  Quantum mechanics gives stability to a Nash equilibrium , 2002 .

[13]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[14]  Derek Abbott,et al.  The paradox of Parrondo's games , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  B. Baaquie,et al.  Quantum field theory of treasury bonds. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Derek Abbott,et al.  Brownian ratchets and Parrondo's games. , 2001, Chaos.

[17]  Azhar Iqbal,et al.  Darwinism in quantum systems , 2002 .

[18]  Hui Li,et al.  Entanglement playing a dominating role in quantum games , 2001 .

[19]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[20]  Guang-Can Guo,et al.  Quantum strategies of quantum measurements , 2001 .

[21]  Erica Klarreich,et al.  Playing Both Sides , 2001 .

[22]  Derek Abbott,et al.  Game theory: Losing strategies can win by Parrondo's paradox , 1999, Nature.

[23]  E. W. Piotrowski,et al.  Quantum bargaining games , 2002 .

[24]  Derek Abbott,et al.  A REVIEW OF PARRONDO'S PARADOX , 2002 .

[25]  D. Abbott,et al.  Quantum Parrondo's games , 2002 .

[26]  David A. Meyer,et al.  QUANTUM PARRONDO GAMES: BIASED AND UNBIASED , 2002 .

[27]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[28]  Parrondo’s paradoxical games and the discrete Brownian ratchet , 2000 .

[29]  G. J. Milburn,et al.  Implementing the quantum random walk , 2002 .

[30]  Neil Johnson,et al.  Parrondo Games and Quantum Algorithms , 2002 .

[31]  E. W. Piotrowski,et al.  Quantum Market Games , 2001 .

[32]  D. Abbott,et al.  Quantum version of the Monty Hall problem , 2001, quant-ph/0109035.

[33]  Azhar Iqbal,et al.  Evolutionarily stable strategies in quantum games , 2000 .

[34]  Jens Eisert,et al.  Quantum games , 2020, Understanding Game Theory.

[35]  Giacomo Mauro D'Ariano,et al.  The quantum monty hall problem , 2002, Quantum Inf. Comput..