Social service robots to support independent living

BackgroundAssistive robots could be a future means to support independent living for seniors.ObjectiveThis article provides insights into the latest developments in social service robots (SSR) based on the recently finished HOBBIT project. The idea of the HOBBIT project was to develop a low-cost SSR which is able to reduce the risk of falling, to detect falls and handle emergencies in private homes. The main objective of the project was to raise the technology to a level that allows the robot to be fully autonomously deployed in the private homes of older users and to evaluate technology market readiness, utility, usability and affordability under real-world conditions.MethodDuring the initial phase of the project, a first prototype (PT1) was developed. The results of laboratory tests with PT1 were used for the development of a second prototype (PT2), which was finally tested in seven households of senior adults (mean age 79 years) for 3 weeks each, i.e. in total more than 5 months.ResultsThe results showed that PT2 is intuitive to handle and that the functions offered meet the needs of older users; however, the robot was considered more as a toy than a supportive device for independent living. Furthermore, despite an emergency function of the robot, perceived security did not increase.ConclusionReasons for this might be a lack of technological robustness and slow performance of the prototype and also the good health conditions of the users; however, users believed that a market-ready version of the robot would be vital for supporting people who are more fragile and more socially isolated. Thus, SSRs have the potential to support independent living of older people although the technology has to be considerably improved to reach market readiness.ZusammenfassungHintergrundAssistierende Roboter könnten in Zukunft älteren Menschen helfen, länger unabhängig zu bleiben.Ziel der ArbeitDieser Beitrag gibt einen Einblick über den aktuellen Stand der Entwicklung von sozialen Servicerobotern (SSR) anhand des kürzlich abgeschlossenen HOBBIT-Projekts. Die Idee des HOBBIT-Projekts war es, einen kostengünstigen SSR zu entwickeln, der Stürze seines Besitzers automatisch erfassen und Notrufe abwickeln kann. Dabei sollte die Technologie so weit vorangetrieben werden, dass der SSR in privaten Haushalten autonom für einen längeren Zeitraum eingesetzt und evaluiert werden kann.MethodeIn der ersten Phase des Projekts wurde ein erster Prototyp (PT1) entwickelt. Intensive Labortests bildeten darauf aufbauend die Basis für die Entwicklung des zweiten Prototyps (PT2), der schlussendlich von 7 Benutzerinnen und Benutzern (im Durchschnitt 79 Jahre alt) in deren privaten Wohnungen jeweils für 3 Wochen getestet wurde (in Summe also für mehr als 5 Monate).ErgebnisseDie Ergebnisse zeigen, dass PT2 intuitiv zu bedienen ist und die Funktionen des SSR prinzipiell als sehr nützlich empfunden werden. Dennoch sahen die Benutzerinnen und Benutzer den Roboter eher als ein Spielzeug und nicht als tatsächliche Hilfestellung für ihren Lebensalltag an. Funktionen wie die Notfallerkennung hatten keine Auswirkungen auf das subjektive Sicherheitsempfinden.SchlussfolgerungDie Gründe für diese Ergebnisse dürften im Auftreten häufiger technischer Probleme, in der niedrigen Geschwindigkeit des Roboters, aber auch im guten Gesundheitszustand der Teilnehmerinnen und Teilnehmer zu finden sein. Jedenfalls gaben die Benutzerinnen und Benutzer an, dass sie eine marktreife Version des Roboters als äußerst nützlich erachten würden. Soziale Serviceroboter haben demnach Potenzial, ältere Personen in ihrer Unabhängigkeit zu unterstützen. Um die Marktreife zu erlangen, muss die dahinterstehende Technologie allerdings noch wesentlich verbessert werden.

[1]  S. Bandinelli,et al.  Activity Restriction Induced by Fear of Falling and Objective and Subjective Measures of Physical Function: A Prospective Cohort Study , 2008, Journal of the American Geriatrics Society.

[2]  Fred D. Davis Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology , 1989, MIS Q..

[3]  R. Kressig,et al.  Motor cognitive dual tasking , 2015, Zeitschrift für Gerontologie und Geriatrie.

[4]  S. Leonhardt,et al.  A survey on robotic devices for upper limb rehabilitation , 2014, Journal of NeuroEngineering and Rehabilitation.

[5]  Antonis A. Argyros,et al.  Hobbit , a care robot supporting independent living at home : First prototype and lessons learned , 2015 .

[6]  F. Jouen,et al.  “Are we ready for robots that care for us?” Attitudes and opinions of older adults toward socially assistive robots , 2015, Front. Aging Neurosci..

[7]  D. Sterling,et al.  Geriatric falls: injury severity is high and disproportionate to mechanism. , 1998, The Journal of trauma.

[8]  M. Scherer,et al.  Assistive Technology Use and Stigma , 2004 .

[9]  Bruce A. MacDonald,et al.  Does the Robot Have a Mind? Mind Perception and Attitudes Towards Robots Predict Use of an Eldercare Robot , 2014, Int. J. Soc. Robotics.

[10]  Tatsuya Nomura,et al.  Experimental investigation into influence of negative attitudes toward robots on human–robot interaction , 2006, AI & SOCIETY.

[11]  M. Wolf,et al.  The cost and frequency of hospitalization for fall-related injuries in older adults. , 1992, American journal of public health.

[12]  L. Reichertz Multimodal sensor-based fall detection within the domestic environment of elderly people , 2014 .

[13]  J. Broekens,et al.  Assistive social robots in elderly care: a review , 2009 .

[14]  Alfred Cuschieri,et al.  Economic evaluation of da Vinci-assisted robotic surgery: a systematic review , 2012, Surgical Endoscopy.

[15]  Christoph Gisinger,et al.  Meeting Requirements of Older Users? Robot Prototype Trials in a Home-like Environment , 2014, HCI.

[16]  Jenay M. Beer,et al.  The domesticated robot: Design guidelines for assisting older adults to age in place , 2012, 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[17]  G. Morone,et al.  Robotic Technologies and Rehabilitation: New Tools for Stroke Patients' Therapy , 2013, BioMed research international.

[18]  L. Yardley,et al.  Development and initial validation of the Falls Efficacy Scale-International (FES-I). , 2005, Age and ageing.

[19]  Rui M. V. Abreu,et al.  1-Aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxy)phenyl]ureas as VEGFR-2 Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modelling Studies , 2013, BioMed research international.

[20]  Ben J. A. Kröse,et al.  Accompany: Acceptable robotiCs COMPanions for AgeiNG Years — Multidimensional aspects of human-system interactions , 2013, 2013 6th International Conference on Human System Interactions (HSI).

[21]  Bruce A. MacDonald,et al.  Acceptance of Healthcare Robots for the Older Population: Review and Future Directions , 2009, Int. J. Soc. Robotics.

[22]  Roger Bemelmans,et al.  Socially assistive robots in elderly care: a systematic review into effects and effectiveness. , 2012, Journal of the American Medical Directors Association.

[23]  D. De Ronchi,et al.  Animal-assisted interventions for elderly patients affected by dementia or psychiatric disorders: a review. , 2013, Journal of psychiatric research.

[24]  Johannes Oberzaucher,et al.  Evaluation of Human Robot Interaction Factors of a Socially Assistive Robot Together with Older People , 2012, 2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems.