Thermodynamical interpretation of an adaptive walk on a Mt. Fuji-type fitness landscape: Einstein relation-like formula holds in a stochastic evolution.

[1]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[2]  Tetsuya Yomo,et al.  Evolvability of random polypeptides through functional selection within a small library. , 2002, Protein engineering.

[3]  主税 佐藤,et al.  電圧依存性Na^+チャンネルの3次元構造 : 単粒子解析によるタンパク質の構造決定 , 2002 .

[4]  K. Kaneko,et al.  2M1345 Experimental study on the relationship between flexibility of bio-organismsand evolution rate , 2002 .

[5]  K. Kaneko,et al.  2M1330 Theoretical study on the relationship between flexibility ofbio-organisms and evolution rate , 2002 .

[6]  C. Ofria,et al.  Evolution of digital organisms at high mutation rates leads to survival of the flattest , 2001, Nature.

[7]  Yuzuru Husimi,et al.  Adaptive walks by the fittest among finite random mutants on a Mt. Fuji-type fitness landscape II. Effect of small non-additivity , 2000, Journal of mathematical biology.

[8]  M. Eigen,et al.  Natural selection: a phase transition? , 2000, Biophysical chemistry.

[9]  Y. Husimi,et al.  Adaptive Walks by the Fittest among Finite Random Mutants on a Mt. Fuji-type Fitness Landscape. , 1998, Journal of theoretical biology.

[10]  Y Husimi,et al.  Fitness spectrum among random mutants on Mt. Fuji-type fitness landscape. , 1996, Journal of theoretical biology.

[11]  Peter F. Stadler,et al.  Landscapes: Complex Optimization Problems and Biopolymer Structures , 1994, Comput. Chem..

[12]  Weinberger,et al.  Local properties of Kauffman's N-k model: A tunably rugged energy landscape. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[13]  Yoh Iwasa,et al.  Free fitness that always increases in evolution. , 1988, Journal of theoretical biology.

[14]  Ingo Rechenberg,et al.  The Evolution Strategy. A Mathematical Model of Darwinian Evolution , 1984 .

[15]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[16]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .