Thermodynamical interpretation of an adaptive walk on a Mt. Fuji-type fitness landscape: Einstein relation-like formula holds in a stochastic evolution.
暂无分享,去创建一个
[1] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[2] Tetsuya Yomo,et al. Evolvability of random polypeptides through functional selection within a small library. , 2002, Protein engineering.
[3] 主税 佐藤,et al. 電圧依存性Na^+チャンネルの3次元構造 : 単粒子解析によるタンパク質の構造決定 , 2002 .
[4] K. Kaneko,et al. 2M1345 Experimental study on the relationship between flexibility of bio-organismsand evolution rate , 2002 .
[5] K. Kaneko,et al. 2M1330 Theoretical study on the relationship between flexibility ofbio-organisms and evolution rate , 2002 .
[6] C. Ofria,et al. Evolution of digital organisms at high mutation rates leads to survival of the flattest , 2001, Nature.
[7] Yuzuru Husimi,et al. Adaptive walks by the fittest among finite random mutants on a Mt. Fuji-type fitness landscape II. Effect of small non-additivity , 2000, Journal of mathematical biology.
[8] M. Eigen,et al. Natural selection: a phase transition? , 2000, Biophysical chemistry.
[9] Y. Husimi,et al. Adaptive Walks by the Fittest among Finite Random Mutants on a Mt. Fuji-type Fitness Landscape. , 1998, Journal of theoretical biology.
[10] Y Husimi,et al. Fitness spectrum among random mutants on Mt. Fuji-type fitness landscape. , 1996, Journal of theoretical biology.
[11] Peter F. Stadler,et al. Landscapes: Complex Optimization Problems and Biopolymer Structures , 1994, Comput. Chem..
[12] Weinberger,et al. Local properties of Kauffman's N-k model: A tunably rugged energy landscape. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[13] Yoh Iwasa,et al. Free fitness that always increases in evolution. , 1988, Journal of theoretical biology.
[14] Ingo Rechenberg,et al. The Evolution Strategy. A Mathematical Model of Darwinian Evolution , 1984 .
[15] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .
[16] A. Einstein. On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .