Asymptotic Improvements on the Exact Matching Distance for 2-parameter Persistence

In the field of topological data analysis, persistence modules are used to express geometrical features of data sets. The matching distance dM measures the difference between 2-parameter persistence modules by taking the maximum bottleneck distance between 1-parameter slices of the modules. The previous fastest algorithm to compute dM exactly runs in O(n ), where ω is the matrix multiplication constant. We improve significantly on this by describing an algorithm with expected running time O(n log n). We first solve the decision problem dM ≤ λ for a constant λ in O(n logn) by traversing a line arrangement in the dual plane, where each point represents a slice. Then we lift the line arrangement to a plane arrangement in R whose vertices represent possible values for dM, and use a randomized incremental method to search through the vertices and find dM. The expected running time of this algorithm is O((n +T (n)) log n), where T (n) is an upper bound for the complexity of deciding if dM ≤ λ.

[1]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[2]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[3]  Theodore L. Willke,et al.  Persistent Homology for Virtual Screening , 2018 .

[4]  Steve Oudot,et al.  Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.

[5]  Herbert Edelsbrunner,et al.  Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..

[6]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[7]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[8]  Michael Lesnick,et al.  Interactive Visualization of 2-D Persistence Modules , 2015, ArXiv.

[9]  Ulrich Bauer,et al.  Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..

[10]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[11]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[12]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[13]  Henry Markram,et al.  Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function , 2016, Front. Comput. Neurosci..

[14]  Michael Kerber,et al.  Efficient Approximation of the Matching Distance for 2-parameter persistence , 2020, Symposium on Computational Geometry.

[15]  Nils A. Baas,et al.  Decoding of Neural Data Using Cohomological Feature Extraction , 2017, Neural Computation.

[16]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[17]  Primoz Skraba,et al.  Wasserstein Stability for Persistence Diagrams , 2020, 2006.16824.

[18]  Emerson G. Escolar,et al.  Hierarchical structures of amorphous solids characterized by persistent homology , 2015, Proceedings of the National Academy of Sciences.

[19]  Claudia Landi,et al.  The rank invariant stability via interleavings , 2014, ArXiv.

[20]  Berend Smit,et al.  High-Throughput Screening Approach for Nanoporous Materials Genome Using Topological Data Analysis: Application to Zeolites , 2018, Journal of chemical theory and computation.

[21]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[22]  Dmitriy Morozov,et al.  Geometry Helps to Compare Persistence Diagrams , 2016, ALENEX.

[23]  Herbert Edelsbrunner,et al.  The Topology of the Cosmic Web in Terms of Persistent Betti Numbers , 2016, 1608.04519.

[24]  Alon Itai,et al.  Geometry Helps in Bottleneck Matching and Related Problems , 2001, Algorithmica.

[25]  Steve Oudot,et al.  Exact computation of the matching distance on 2-parameter persistence modules , 2018, SoCG.

[26]  David Cohen-Steiner,et al.  Lipschitz Functions Have Lp-Stable Persistence , 2010, Found. Comput. Math..

[27]  Tamal K. Dey,et al.  Computing Bottleneck Distance for 2-D Interval Decomposable Modules , 2018, SoCG.

[28]  Daniela Giorgi,et al.  A new algorithm for computing the 2-dimensional matching distance between size functions , 2011, Pattern Recognit. Lett..

[29]  Michael Kerber,et al.  Computing the Interleaving Distance is NP-Hard , 2018, Foundations of Computational Mathematics.

[30]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[31]  Xiaojun Zheng,et al.  Distributions of Matching Distances in Topological Data Analysis , 2018, SIAM Undergraduate Research Online.

[32]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[33]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[34]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.