Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications.

[1]  E. White,et al.  Chemical and functional properties of metal chelators that mobilize copper to elicit fungal killing of Cryptococcus neoformans. , 2017, Metallomics : integrated biometal science.

[2]  Eric P. Skaar,et al.  Transition Metals and Virulence in Bacteria. , 2016, Annual review of genetics.

[3]  T. O. Ajiboye,et al.  Redox and respiratory chain related alterations in the lophirones B and C-mediated bacterial lethality. , 2016, Microbial pathogenesis.

[4]  G. Vecchio,et al.  8-Hydroxyquinolines in medicinal chemistry: A structural perspective. , 2016, European journal of medicinal chemistry.

[5]  D. Richardson,et al.  Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. , 2016, Metallomics : integrated biometal science.

[6]  M. Harada,et al.  Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. , 2016, Experimental cell research.

[7]  N. Cioffi,et al.  MALDI-TOF mass spectrometry analysis of proteins and lipids in Escherichia coli exposed to copper ions and nanoparticles. , 2016, Journal of mass spectrometry : JMS.

[8]  O. Kutsch,et al.  8-Hydroxyquinolines Are Boosting Agents of Copper-Related Toxicity in Mycobacterium tuberculosis , 2016, Antimicrobial Agents and Chemotherapy.

[9]  Alex G Dalecki,et al.  Development of a web-based tool for automated processing and cataloging of a unique combinatorial drug screen. , 2016, Journal of microbiological methods.

[10]  Jiaquan Xu,et al.  Deaths: Final Data for 2014. , 2016, National vital statistics reports : from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System.

[11]  J. Mecsas,et al.  Klebsiella pneumoniae: Going on the Offense with a Strong Defense , 2016, Microbiology and Molecular Reviews.

[12]  Romé Voulhoux,et al.  Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus , 2016, Science.

[13]  T. Brüser,et al.  The Tat Substrate CueO Is Transported in an Incomplete Folding State* , 2016, The Journal of Biological Chemistry.

[14]  O. Kutsch,et al.  Combinatorial phenotypic screen uncovers unrecognized family of extended thiourea inhibitors with copper-dependent anti-staphylococcal activity. , 2016, Metallomics : integrated biometal science.

[15]  F. Daldal,et al.  Cooperation between two periplasmic copper chaperones is required for full activity of the cbb3‐type cytochrome c oxidase and copper homeostasis in Rhodobacter capsulatus , 2016, Molecular microbiology.

[16]  Qi Zhang,et al.  Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing , 2016, Oncology letters.

[17]  F. Hoffmann,et al.  Copper(ii) mixed-ligand polypyridyl complexes with doxycycline - structures and biological evaluation. , 2016, Dalton transactions.

[18]  J. Schwartz Zinc Pyrithione: A Topical Antimicrobial With Complex Pharmaceutics. , 2016, Journal of drugs in dermatology : JDD.

[19]  P. Cremer,et al.  Cu(2+) Binds to Phosphatidylethanolamine and Increases Oxidation in Lipid Membranes. , 2016, Journal of the American Chemical Society.

[20]  E. Brown,et al.  Antibacterial drug discovery in the resistance era , 2016, Nature.

[21]  F. Daldal,et al.  Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA , 2016, mBio.

[22]  V. Culotta,et al.  SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of Infection , 2016, PLoS pathogens.

[23]  B. Henrissat,et al.  Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family , 2015, Nature Communications.

[24]  Asher Mullard,et al.  The phenotypic screening pendulum swings , 2015, Nature Reviews Drug Discovery.

[25]  C. Medforth,et al.  Interactions of a non-fluorescent fluoroquinolone with biological membrane models: A multi-technique approach. , 2015, International journal of pharmaceutics.

[26]  Delphine Denoyer,et al.  Targeting copper in cancer therapy: 'Copper That Cancer'. , 2015, Metallomics : integrated biometal science.

[27]  M. Maffia,et al.  Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems , 2015, Journal of Vascular Research.

[28]  A. Durand,et al.  c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm , 2015, mBio.

[29]  E. Brown,et al.  Unconventional screening approaches for antibiotic discovery , 2015, Annals of the New York Academy of Sciences.

[30]  W. Shafer,et al.  Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics , 2015, Antimicrobial Agents and Chemotherapy.

[31]  M. Tolmasky,et al.  Inhibition of Aminoglycoside 6′-N-Acetyltransferase Type Ib-Mediated Amikacin Resistance in Klebsiella pneumoniae by Zinc and Copper Pyrithione , 2015, Antimicrobial Agents and Chemotherapy.

[32]  K. Garber Cancer's copper connections. , 2015, Science.

[33]  K. Garber BIOMEDICINE. Targeting copper to treat breast cancer. , 2015, Science.

[34]  Dean G. Brown,et al.  ESKAPEing the labyrinth of antibacterial discovery , 2015, Nature Reviews Drug Discovery.

[35]  P. Crouch,et al.  Editorial: Metals and neurodegeneration: restoring the balance , 2015, Front. Aging Neurosci..

[36]  P. Cremer,et al.  Unquenchable Surface Potential Dramatically Enhances Cu(2+) Binding to Phosphatidylserine Lipids. , 2015, Journal of the American Chemical Society.

[37]  K. Darwin,et al.  Copper homeostasis in Mycobacterium tuberculosis. , 2015, Metallomics : integrated biometal science.

[38]  M. Petris,et al.  Copper tolerance and virulence in bacteria. , 2015, Metallomics : integrated biometal science.

[39]  K. Darwin Mycobacterium tuberculosis and Copper: A Newly Appreciated Defense against an Old Foe?* , 2015, The Journal of Biological Chemistry.

[40]  A. McEwan,et al.  The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens* , 2015, The Journal of Biological Chemistry.

[41]  O. Kutsch,et al.  Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner , 2015, Antimicrobial Agents and Chemotherapy.

[42]  T. Kehl-Fie,et al.  Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae. , 2015, Metallomics : integrated biometal science.

[43]  A. Gettie,et al.  MIV-150/Zinc Acetate Gel Inhibits Cell-Associated Simian-Human Immunodeficiency Virus Reverse Transcriptase Infection in a Macaque Vaginal Explant Model , 2015, Antimicrobial Agents and Chemotherapy.

[44]  H. Lebrette,et al.  Novel insights into nickel import in Staphylococcus aureus: the positive role of free histidine and structural characterization of a new thiazolidine-type nickel chelator. , 2015, Metallomics : integrated biometal science.

[45]  M. Niederweis,et al.  Mycobacteria, metals, and the macrophage , 2015, Immunological reviews.

[46]  M. Niederweis,et al.  The role of porins in copper acquisition by mycobacteria , 2015 .

[47]  X. Gu,et al.  Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction , 2015, Ecotoxicology.

[48]  T. Roșu,et al.  Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones , 2015, Journal of cellular and molecular medicine.

[49]  N. Gadura,et al.  Antimicrobial Properties of Copper in Gram-Negative and Gram-Positive Bacteria , 2015 .

[50]  Pradeep R. Varadwaj,et al.  Ligand(s)-to-metal charge transfer as a factor controlling the equilibrium constants of late first-row transition metal complexes: revealing the Irving-Williams thermodynamical series. , 2015, Physical chemistry chemical physics : PCCP.

[51]  K. Lewis,et al.  A new antibiotic kills pathogens without detectable resistance , 2015, Nature.

[52]  P. Zhan,et al.  8-Hydroxyquinoline: a privileged structure with a broad-ranging pharmacological potential , 2015 .

[53]  D. Rasko,et al.  Host-specific induction of Escherichia coli fitness genes during human urinary tract infection , 2014, Proceedings of the National Academy of Sciences.

[54]  M. Webber,et al.  Molecular mechanisms of antibiotic resistance , 2014, Nature Reviews Microbiology.

[55]  Eric P. Skaar,et al.  Metal limitation and toxicity at the interface between host and pathogen. , 2014, FEMS microbiology reviews.

[56]  D. Giedroc,et al.  Copper Transport and Trafficking at the Host–Bacterial Pathogen Interface , 2014, Accounts of chemical research.

[57]  F. Tuna,et al.  On the interaction of copper(II) with disulfiram. , 2014, Chemical communications.

[58]  Y. Tor,et al.  Antibiotics and Bacterial Resistance in the 21st Century , 2014, Perspectives in medicinal chemistry.

[59]  N. Robinson,et al.  Metal Preferences and Metallation , 2014, The Journal of Biological Chemistry.

[60]  D. Thiele,et al.  Exploiting innate immune cell activation of a copper-dependent antimicrobial agent during infection. , 2014, Chemistry & biology.

[61]  Christopher A. Broberg,et al.  Klebsiella: a long way to go towards understanding this enigmatic jet-setter , 2014, F1000prime reports.

[62]  H. Gali-Muhtasib,et al.  Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species , 2014, BMC Cancer.

[63]  Mohammed E. M. Tolba,et al.  Perturbation of copper homeostasis is instrumental in early developmental arrest of intraerythrocytic Plasmodium falciparum , 2014, BMC Microbiology.

[64]  Jun O. Liu,et al.  Recent Advances in Drug Repositioning for the Discovery of New Anticancer Drugs , 2014, International journal of biological sciences.

[65]  Antonio Ayala,et al.  Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal , 2014, Oxidative medicine and cellular longevity.

[66]  E. Niki Antioxidants: Basic principles, emerging concepts, and problems , 2014, Biomedical journal.

[67]  Tej B. Shrestha,et al.  Copper Complexation Screen Reveals Compounds with Potent Antibiotic Properties against Methicillin-Resistant Staphylococcus aureus , 2014, Antimicrobial Agents and Chemotherapy.

[68]  A. McEwan,et al.  Antimicrobial effects of copper(II) bis(thiosemicarbazonato) complexes provide new insight into their biochemical mode of action. , 2014, Metallomics : integrated biometal science.

[69]  T. Ronnebaum,et al.  Human copper-dependent amine oxidases. , 2014, Archives of biochemistry and biophysics.

[70]  R. Machado,et al.  Upregulated Copper Transporters in Hypoxia-Induced Pulmonary Hypertension , 2014, PloS one.

[71]  Elizabeth R. Ballou,et al.  Conflicting Interests in the Pathogen–Host Tug of War: Fungal Micronutrient Scavenging Versus Mammalian Nutritional Immunity , 2014, PLoS pathogens.

[72]  K. Srivenugopal,et al.  Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. , 2014, Carcinogenesis.

[73]  J. Sacchettini,et al.  The Copper-Responsive RicR Regulon Contributes to Mycobacterium tuberculosis Virulence , 2014, mBio.

[74]  J. P. Henderson,et al.  Pathogenic adaptations to host-derived antibacterial copper , 2014, Front. Cell. Infect. Microbiol..

[75]  M. Jackson,et al.  A noncompetitive inhibitor for Mycobacterium tuberculosis's class IIa fructose 1,6-bisphosphate aldolase. , 2014, Biochemistry.

[76]  Ildinete Silva-Pereira,et al.  Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance , 2013, Front. Microbiol..

[77]  M. Dinauer,et al.  Cupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic , 2013, ACS chemical biology.

[78]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[79]  José M. Argüello,et al.  Mechanisms of copper homeostasis in bacteria , 2013, Front. Cell. Infect. Microbiol..

[80]  A. McEwan,et al.  Antimicrobial action of copper is amplified via inhibition of heme biosynthesis. , 2013, ACS chemical biology.

[81]  D. Giedroc,et al.  Manganese acquisition and homeostasis at the host-pathogen interface , 2013, Front. Cell. Infect. Microbiol..

[82]  S. Leone,et al.  OH-initiated oxidation of sub-micron unsaturated fatty acid particles. , 2013, Physical chemistry chemical physics : PCCP.

[83]  J. Pagés,et al.  Bacterial Membrane, a Key for Controlling Drug Influx and Efflux , 2013 .

[84]  M. Niederweis,et al.  Porins Increase Copper Susceptibility of Mycobacterium tuberculosis , 2013, Journal of bacteriology.

[85]  Xiaorong Wang,et al.  Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils. , 2013, Environmental pollution.

[86]  V. Uivarosi Metal Complexes of Quinolone Antibiotics and Their Applications: An Update , 2013, Molecules.

[87]  A. Yan,et al.  Copper Efflux Is Induced during Anaerobic Amino Acid Limitation in Escherichia coli To Protect Iron-Sulfur Cluster Enzymes and Biogenesis , 2013, Journal of bacteriology.

[88]  M. Niederweis,et al.  A Multicopper Oxidase Is Required for Copper Resistance in Mycobacterium tuberculosis , 2013, Journal of bacteriology.

[89]  M. Solioz,et al.  Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. , 2013, Microbiology.

[90]  J. Babich,et al.  The Role of Copper in Disulfiram-Induced Toxicity and Radiosensitization of Cancer Cells , 2013, The Journal of Nuclear Medicine.

[91]  J. Imlay,et al.  The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium , 2013, Nature Reviews Microbiology.

[92]  J. Medina-Franco,et al.  Shifting from the single to the multitarget paradigm in drug discovery. , 2013, Drug discovery today.

[93]  K. Lewis Platforms for antibiotic discovery , 2013, Nature Reviews Drug Discovery.

[94]  J. Kaplan,et al.  Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. , 2013, American journal of physiology. Cell physiology.

[95]  C. Supuran,et al.  Dithiocarbamates strongly inhibit the β-class carbonic anhydrases from Mycobacterium tuberculosis , 2013, Journal of enzyme inhibition and medicinal chemistry.

[96]  K. Fisher,et al.  The copper supply pathway to a Salmonella Cu,Zn‐superoxide dismutase (SodCII) involves P1B‐type ATPase copper efflux and periplasmic CueP , 2013, Molecular microbiology.

[97]  Khadine A. Higgins,et al.  A new structural paradigm in copper resistance in Streptococcus pneumoniae , 2012, Nature chemical biology.

[98]  Tej B. Shrestha,et al.  Copper-Boosting Compounds: a Novel Concept for Antimycobacterial Drug Discovery , 2012, Antimicrobial Agents and Chemotherapy.

[99]  B. Valderrama,et al.  Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria , 2012, BMC Microbiology.

[100]  A. Okoh,et al.  Bacterial Exopolysaccharides: Functionality and Prospects , 2012, International journal of molecular sciences.

[101]  D. Thiele,et al.  Copper at the Front Line of the Host-Pathogen Battle , 2012, PLoS pathogens.

[102]  M. Markowicz,et al.  Development of copper based drugs, radiopharmaceuticals and medical materials , 2012, BioMetals.

[103]  Eric P. Skaar,et al.  Nutritional immunity: transition metals at the pathogen–host interface , 2012, Nature Reviews Microbiology.

[104]  J. Crowley,et al.  The siderophore yersiniabactin binds copper to protect pathogens during infection , 2012, Nature chemical biology.

[105]  Vindhya Koppaka,et al.  Aldehyde Dehydrogenase Inhibitors: a Comprehensive Review of the Pharmacology, Mechanism of Action, Substrate Specificity, and Clinical Application , 2012, Pharmacological Reviews.

[106]  Teresa R. O’Meara,et al.  The Cryptococcus neoformans Capsule: a Sword and a Shield , 2012, Clinical Microbiology Reviews.

[107]  A. Orr,et al.  Mitochondrial Complex II Can Generate Reactive Oxygen Species at High Rates in Both the Forward and Reverse Reactions* , 2012, The Journal of Biological Chemistry.

[108]  F. Daldal,et al.  Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus. , 2012, Biochimica et biophysica acta.

[109]  L. Kremer,et al.  Antitubercular Activity of Disulfiram, an Antialcoholism Drug, against Multidrug- and Extensively Drug-Resistant Mycobacterium tuberculosis Isolates , 2012, Antimicrobial Agents and Chemotherapy.

[110]  D. Portnoy,et al.  Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. , 2012, Cell host & microbe.

[111]  M. Sweet,et al.  Copper redistribution in murine macrophages in response to Salmonella infection. , 2012, The Biochemical journal.

[112]  P. Cremer,et al.  Phosphatidylserine reversibly binds Cu2+ with extremely high affinity. , 2012, Journal of the American Chemical Society.

[113]  M. Linder The relationship of copper to DNA damage and damage prevention in humans. , 2012, Mutation research.

[114]  Blaine R. Roberts,et al.  The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson’s disease , 2012, The Journal of experimental medicine.

[115]  R. Kurzrock,et al.  Overcoming Platinum Resistance through the Use of a Copper-Lowering Agent , 2012, Molecular Cancer Therapeutics.

[116]  Hyun Ju Lee,et al.  Functional proton transfer pathways in the heme-copper oxidase superfamily. , 2012, Biochimica et biophysica acta.

[117]  M. Elhabiri,et al.  Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. , 2012, Dalton transactions.

[118]  M. Petris,et al.  Copper Homeostasis at the Host-Pathogen Interface* , 2012, The Journal of Biological Chemistry.

[119]  D. Thiele,et al.  Copper in microbial pathogenesis: meddling with the metal. , 2012, Cell host & microbe.

[120]  S. Mongkolsuk,et al.  McsA and the roles of metal-binding motif in Staphylococcus aureus. , 2012, FEMS microbiology letters.

[121]  F. Daldal,et al.  Novel Transporter Required for Biogenesis of cbb3-Type Cytochrome c Oxidase in Rhodobacter capsulatus , 2012, mBio.

[122]  N. Gadura,et al.  Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli , 2012, Applied and Environmental Microbiology.

[123]  A. McEwan,et al.  Phenotypic Characterization of a copA Mutant of Neisseria gonorrhoeae Identifies a Link between Copper and Nitrosative Stress , 2011, Infection and Immunity.

[124]  Jun O. Liu,et al.  Characterization of clioquinol and analogues as novel inhibitors of methionine aminopeptidases from Mycobacterium tuberculosis. , 2011, Tuberculosis.

[125]  C. Dupont,et al.  Copper toxicity and the origin of bacterial resistance--new insights and applications. , 2011, Metallomics : integrated biometal science.

[126]  Rebecca Hamer,et al.  Cytochrome c biogenesis System I , 2011, The FEBS journal.

[127]  James L. Hickey,et al.  Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (CuII(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model* , 2011, The Journal of Biological Chemistry.

[128]  R. Gyawali,et al.  Antimicrobial Activity of Copper Alone and in Combination with Lactic Acid against Escherichia coli O157:H7 in Laboratory Medium and on the Surface of Lettuce and Tomatoes , 2011, Journal of pathogens.

[129]  P. Hu,et al.  Zinc Pyrithione Inhibits Yeast Growth through Copper Influx and Inactivation of Iron-Sulfur Proteins , 2011, Antimicrobial Agents and Chemotherapy.

[130]  D. Livermore Discovery research: the scientific challenge of finding new antibiotics. , 2011, The Journal of antimicrobial chemotherapy.

[131]  J. Morrissey,et al.  The Staphylococcus aureus CsoR regulates both chromosomal and plasmid-encoded copper resistance mechanisms. , 2011, Environmental microbiology.

[132]  P. Andrew,et al.  The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae , 2011, Molecular microbiology.

[133]  Peter W. Andrew,et al.  The combined actions of the copper‐responsive repressor CsoR and copper‐metallochaperone CopZ modulate CopA‐mediated copper efflux in the intracellular pathogen Listeria monocytogenes , 2011, Molecular microbiology.

[134]  D. Swinney,et al.  How were new medicines discovered? , 2011, Nature Reviews Drug Discovery.

[135]  J. Collins,et al.  Transcriptional regulation of the Menkes copper ATPase (Atp7a) gene by hypoxia-inducible factor (HIF2{alpha}) in intestinal epithelial cells. , 2011, American journal of physiology. Cell physiology.

[136]  L. Bianchi,et al.  Highly reactive oxygen species: detection, formation, and possible functions , 2011, Cellular and Molecular Life Sciences.

[137]  J. Slauch How does the oxidative burst of macrophages kill bacteria? Still an open question , 2011, Molecular microbiology.

[138]  N. Robinson,et al.  Promiscuity and preferences of metallothioneins: the cell rules , 2011, BMC Biology.

[139]  P. Donnelly,et al.  Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. , 2011, Chemical Society reviews.

[140]  A. Gettie,et al.  The Nonnucleoside Reverse Transcriptase Inhibitor MIV-150 in Carrageenan Gel Prevents Rectal Transmission of Simian/Human Immunodeficiency Virus Infection in Macaques , 2011, Journal of Virology.

[141]  R. Farías,et al.  Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components , 2011, BioMetals.

[142]  S. Rees,et al.  Principles of early drug discovery , 2011, British journal of pharmacology.

[143]  A. Schimmer Clioquinol - a novel copper-dependent and independent proteasome inhibitor. , 2011, Current cancer drug targets.

[144]  J. Argüello,et al.  The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function , 2011, BioMetals.

[145]  Tej B. Shrestha,et al.  Copper resistance is essential for virulence of Mycobacterium tuberculosis , 2011, Proceedings of the National Academy of Sciences.

[146]  S. Peterson,et al.  A novel copper‐responsive regulon in Mycobacterium tuberculosis , 2011, Molecular microbiology.

[147]  J. Argüello,et al.  Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa , 2010, Molecular microbiology.

[148]  O. Pokrovsky,et al.  Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides. , 2010, Journal of colloid and interface science.

[149]  S. K. Ward,et al.  CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis , 2010, Molecular microbiology.

[150]  Á. Catala A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. , 2010, Biochemical and biophysical research communications.

[151]  S. Firbank,et al.  Structure and Metal Loading of a Soluble Periplasm Cuproprotein* , 2010, The Journal of Biological Chemistry.

[152]  K. Waldron,et al.  Copper Homeostasis in Salmonella Is Atypical and Copper-CueP Is a Major Periplasmic Metal Complex* , 2010, The Journal of Biological Chemistry.

[153]  I. Schalk,et al.  Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. , 2010, Environmental microbiology reports.

[154]  J Polanski,et al.  Quinoline-based antifungals. , 2010, Current medicinal chemistry.

[155]  T. Mitchell,et al.  Streptococcus pneumoniae: virulence factors and variation. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[156]  Eric P. Skaar,et al.  Nutritional immunity beyond iron: a role for manganese and zinc. , 2010, Current opinion in chemical biology.

[157]  S. Lutsenko Human copper homeostasis: a network of interconnected pathways. , 2010, Current opinion in chemical biology.

[158]  M. Marahiel,et al.  Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in Bacillus subtilis , 2010, Journal of bacteriology.

[159]  M. Sweet,et al.  The Multi-Copper-Ion Oxidase CueO of Salmonella enterica Serovar Typhimurium Is Required for Systemic Virulence , 2010, Infection and Immunity.

[160]  J. Imlay,et al.  Two sources of endogenous hydrogen peroxide in Escherichia coli , 2010, Molecular microbiology.

[161]  M. Virji,et al.  Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease , 2010, Clinical science.

[162]  Yi Lu Metal ions as matchmakers for proteins , 2010, Proceedings of the National Academy of Sciences.

[163]  Jun O. Liu,et al.  Methionine aminopeptidases from Mycobacterium tuberculosis as novel antimycobacterial targets. , 2010, Chemistry & biology.

[164]  J. Morrissey,et al.  Copper Stress Induces a Global Stress Response in Staphylococcus aureus and Represses sae and agr Expression and Biofilm Formation , 2009, Applied and Environmental Microbiology.

[165]  K. Fritsche,et al.  A Role for the ATP7A Copper-transporting ATPase in Macrophage Bactericidal Activity* , 2009, The Journal of Biological Chemistry.

[166]  B. Ngwenya,et al.  Physical and chemical effects of extracellular polymers (EPS) on Zn adsorption to Bacillus licheniformis S-86. , 2009, Journal of colloid and interface science.

[167]  Lynn Rasmussen,et al.  High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. , 2009, Tuberculosis.

[168]  M. Fischbach,et al.  Antibiotics for Emerging Pathogens , 2009, Science.

[169]  Kathryn L Haas,et al.  Application of metal coordination chemistry to explore and manipulate cell biology. , 2009, Chemical reviews.

[170]  Dianne Ford,et al.  Metalloproteins and metal sensing , 2009, Nature.

[171]  Roger E. Summons,et al.  The Continuing Puzzle of the Great Oxidation Event , 2009, Current Biology.

[172]  J. Kaplan,et al.  Cell‐Specific Trafficking Suggests a new role for Renal ATP7B in the Intracellular Copper Storage , 2009, Traffic.

[173]  D. Andersson,et al.  Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+ , 2009, Proceedings of the National Academy of Sciences.

[174]  J. Imlay,et al.  The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity , 2009, Proceedings of the National Academy of Sciences.

[175]  Sergio Grinstein,et al.  Antimicrobial mechanisms of phagocytes and bacterial evasion strategies , 2009, Nature Reviews Microbiology.

[176]  A. Bush,et al.  Copper transport into the secretory pathway is regulated by oxygen in macrophages , 2009, Journal of Cell Science.

[177]  C. Schneider An update on products and mechanisms of lipid peroxidation. , 2009, Molecular nutrition & food research.

[178]  C. Marzano,et al.  Copper complexes as anticancer agents. , 2009, Anti-cancer agents in medicinal chemistry.

[179]  M. Marahiel,et al.  Copper Acquisition Is Mediated by YcnJ and Regulated by YcnK and CsoR in Bacillus subtilis , 2009, Journal of bacteriology.

[180]  C. Vergely,et al.  Forgotten Radicals in Biology , 2008, International journal of biomedical science : IJBS.

[181]  Conrad Bessant,et al.  Protein-folding location can regulate manganese-binding versus copper- or zinc-binding , 2008, Nature.

[182]  J. Seipelt,et al.  Antiviral Activity of the Zinc Ionophores Pyrithione and Hinokitiol against Picornavirus Infections , 2008, Journal of Virology.

[183]  S. Powers,et al.  Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. , 2008, Physiological reviews.

[184]  M. Amoroso,et al.  Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity. , 2008, FEMS microbiology letters.

[185]  D. Eliezer,et al.  Identification of a copper-binding metallothionein in pathogenic mycobacteria. , 2008, Nature chemical biology.

[186]  J. Hacia,et al.  Synthesis and anticancer properties of water-soluble zinc ionophores. , 2008, Cancer research.

[187]  Dietrich H. Nies,et al.  Glutathione and Transition-Metal Homeostasis in Escherichia coli , 2008, Journal of bacteriology.

[188]  A. Ullrich,et al.  Paul Ehrlich's magic bullet concept: 100 years of progress , 2008, Nature Reviews Cancer.

[189]  E. Laskowska,et al.  Escherichia coli heat-shock proteins IbpA/B are involved in resistance to oxidative stress induced by copper. , 2008, Microbiology.

[190]  A. G. Wedd,et al.  Transfer of copper between bis(thiosemicarbazone) ligands and intracellular copper-binding proteins. insights into mechanisms of copper uptake and hypoxia selectivity. , 2008, Inorganic chemistry.

[191]  B. Zakeri,et al.  Chemical biology of tetracycline antibiotics. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[192]  S. K. Ward,et al.  The Global Responses of Mycobacterium tuberculosis to Physiological Levels of Copper , 2008, Journal of bacteriology.

[193]  J. Wade,et al.  Metal effects on the membrane interactions of amyloid-β peptides , 2008, European Biophysics Journal.

[194]  P. Pelicci,et al.  Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? , 2007, Nature Reviews Molecular Cell Biology.

[195]  H. Ingmer,et al.  Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram‐positive bacteria , 2007, Molecular microbiology.

[196]  C. Rensing,et al.  Intracellular Copper Does Not Catalyze the Formation of Oxidative DNA Damage in Escherichia coli , 2006, Journal of bacteriology.

[197]  Poonpilas Hongmanee,et al.  In Vitro Activities of Cloxyquin (5-Chloroquinolin-8-ol) against Mycobacterium tuberculosis , 2006, Antimicrobial Agents and Chemotherapy.

[198]  Michael A Fischbach,et al.  New antibiotics from bacterial natural products , 2006, Nature Biotechnology.

[199]  P. Russell The development of commercial disease control , 2006 .

[200]  M. Parsek,et al.  Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[201]  Kazuo T. Suzuki,et al.  Protective role of metallothionein against copper depletion. , 2006, Archives of biochemistry and biophysics.

[202]  Walter Schaffner,et al.  Copper homeostasis in eukaryotes: teetering on a tightrope. , 2006, Biochimica et biophysica acta.

[203]  T. O’Halloran,et al.  Activation of superoxide dismutases: putting the metal to the pedal. , 2006, Biochimica et biophysica acta.

[204]  R. Farías,et al.  The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. , 2006, Archives of biochemistry and biophysics.

[205]  M. R. Parsons,et al.  Prokaryotic Copper Amine Oxidases , 2006 .

[206]  Roberto Colombo,et al.  Protein carbonylation, cellular dysfunction, and disease progression , 2006, Journal of cellular and molecular medicine.

[207]  C. Masters,et al.  Amyloid-β Peptide Disruption of Lipid Membranes and the Effect of Metal Ions , 2006 .

[208]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[209]  D. Hassett,et al.  The Exopolysaccharide Alginate Protects Pseudomonas aeruginosa Biofilm Bacteria from IFN-γ-Mediated Macrophage Killing1 , 2005, The Journal of Immunology.

[210]  J. Collet,et al.  Copper Stress Causes an in Vivo Requirement for the Escherichia coli Disulfide Isomerase DsbC* , 2005, Journal of Biological Chemistry.

[211]  R. Jayaswal,et al.  Characterization of a Multicopper Oxidase Gene from Staphylococcus aureus , 2005, Applied and Environmental Microbiology.

[212]  A. McEwan,et al.  NmlR of Neisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR family , 2005, Molecular Microbiology.

[213]  C. K. Stover,et al.  Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. , 2005, International journal of medical microbiology : IJMM.

[214]  Chrystala Constantinidou,et al.  The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. , 2005, Microbiology.

[215]  Jin Kusaka,et al.  Phosphatidylethanolamine Domains and Localization of Phospholipid Synthases in Bacillus subtilis Membranes , 2005, Journal of bacteriology.

[216]  B. Lai,et al.  Elemental Analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-Containing Phagosomes Indicates Pathogen-Induced Microenvironments within the Host Cell’s Endosomal System1 , 2005, The Journal of Immunology.

[217]  F. Sams-Dodd Target-based drug discovery: is something wrong? , 2005, Drug discovery today.

[218]  Hinrich W. H. Göhlmann,et al.  A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis , 2005, Science.

[219]  A. Müller,et al.  Linkage between Catecholate Siderophores and the Multicopper Oxidase CueO in Escherichia coli , 2004, Journal of bacteriology.

[220]  Richard Morphy,et al.  From magic bullets to designed multiple ligands. , 2004, Drug discovery today.

[221]  M. Hecker,et al.  Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. , 2004, Microbiology.

[222]  A. Battistoni Role of prokaryotic Cu,Zn superoxide dismutase in pathogenesis. , 2003, Biochemical Society transactions.

[223]  A. Mondragón,et al.  Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR , 2003, Science.

[224]  M. Solioz,et al.  Copper homeostasis in Enterococcus hirae. , 2003, FEMS microbiology reviews.

[225]  J. Skała,et al.  In vitro oxidative activity of cupric complexes of kanamycin A in comparison to in vivo bactericidal efficacy. , 2003, Journal of inorganic biochemistry.

[226]  M. Parsek,et al.  Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa , 2003, Applied and Environmental Microbiology.

[227]  J. Schacht,et al.  Solution chemistry of copper(II)-gentamicin complexes: relevance to metal-related aminoglycoside toxicity. , 2003, Inorganic chemistry.

[228]  Roberto Colombo,et al.  Protein carbonyl groups as biomarkers of oxidative stress. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[229]  J. Wrzesinski,et al.  DNA and RNA damage by Cu(II)-amikacin complex. , 2002, European journal of biochemistry.

[230]  N. Brown,et al.  The Pco proteins are involved in periplasmic copper handling in Escherichia coli. , 2002, Biochemical and biophysical research communications.

[231]  S. Ferguson,et al.  The CcmE protein of the c-type cytochrome biogenesis system: Unusual in vitro heme incorporation into apo-CcmE and transfer from holo-CcmE to apocytochrome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[232]  R. Jordan,et al.  Kinetic study of the oxidation of catechol by aqueous copper(II). , 2002, Inorganic chemistry.

[233]  A. Demain Prescription for an ailing pharmaceutical industry , 2002, Nature Biotechnology.

[234]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[235]  Robert J.P. Williams,et al.  The Biological Chemistry of the Elements: The Inorganic Chemistry of Life , 2001 .

[236]  C. Rensing,et al.  CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. , 2001, Biochemical and biophysical research communications.

[237]  M. Solioz Role of proteolysis in copper homoeostasis. , 2001, Biochemical Society transactions.

[238]  R. Crichton,et al.  Old Iron, Young Copper: from Mars to Venus , 2001, Biometals.

[239]  J. Kehrer The Haber-Weiss reaction and mechanisms of toxicity. , 2000, Toxicology.

[240]  D. Wigley,et al.  Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism , 2000, The EMBO journal.

[241]  R. Galhardo,et al.  Copper ions mediate the lethality induced by hydrogen peroxide in low iron conditions in Escherichia coli. , 2000, Mutation research.

[242]  J. Schacht,et al.  Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo: D-methionine is a potential protectant , 2000, Hearing Research.

[243]  E. Pedersen,et al.  Non-Nucleoside Reverse Transcriptase Inhibitors: The NNRTI Boom , 1999, Antiviral chemistry & chemotherapy.

[244]  J. Mercer,et al.  The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. , 1999, Human molecular genetics.

[245]  J. Schacht,et al.  Salicylate attenuates gentamicin-induced ototoxicity. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[246]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[247]  J. Schacht,et al.  Iron chelators protect from aminoglycoside-induced cochleo- and vestibulo-toxicity. , 1998, Free radical biology & medicine.

[248]  H. Kozłowski,et al.  Kanamycin revisited: a combined potentiometric and spectroscopic study of copper(II) binding to kanamycin B , 1998 .

[249]  T. Terwilliger,et al.  Scission of DNA at a preselected sequence using a single-strand-specific chemical nuclease. , 1998, Chemistry & biology.

[250]  E. Stadtman,et al.  Protein Oxidation in Aging, Disease, and Oxidative Stress* , 1997, The Journal of Biological Chemistry.

[251]  Ronald C. Li,et al.  Mechanistic Investigation of the Reduction in Antimicrobial Activity of Ciprofloxacin by Metal Cations , 1997, Pharmaceutical Research.

[252]  C. Thomas,et al.  Mutants in the CtpA copper transporting P-type ATPase reduce virulence of Listeria monocytogenes. , 1997, Microbial pathogenesis.

[253]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[254]  W. Hillen,et al.  Tetracyclines: antibiotic action, uptake, and resistance mechanisms , 1996, Archives of Microbiology.

[255]  D. Sigman,et al.  Inhibitors of Escherichia coli RNA polymerase specific for the single-stranded DNA of transcription intermediates. Tetrahedral cuprous chelates of 1,10-phenanthrolines. , 1996, Biochemistry.

[256]  Eric M. Priuska,et al.  Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. , 1995, Biochemical pharmacology.

[257]  D. Sanders,et al.  Mechanism of pyrithione-induced membrane depolarization in Neurospora crassa , 1995, Applied and environmental microbiology.

[258]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[259]  C. Bewley,et al.  The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. , 1995, European journal of biochemistry.

[260]  L. Vrang,et al.  The PETT series, a new class of potent nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase , 1995, Antimicrobial agents and chemotherapy.

[261]  P. André,et al.  Utilization of exogenous siderophores and natural catechols by Listeria monocytogenes , 1995, Applied and environmental microbiology.

[262]  J. K. Hurst,et al.  Bactericidal properties of hydrogen peroxide and copper or iron-containing complex ions in relation to leukocyte function. , 1995, Free radical biology & medicine.

[263]  J. Cha,et al.  Copper Hypersensitivity and Uptake in Pseudomonas syringae Containing Cloned Components of the Copper Resistance Operon , 1993, Applied and environmental microbiology.

[264]  N. Robinson,et al.  Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions , 1993, Molecular microbiology.

[265]  B. Johansson A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites , 1992, Acta psychiatrica Scandinavica. Supplementum.

[266]  J. Sagripanti,et al.  Interaction of copper with DNA and antagonism by other metals. , 1991, Toxicology and applied pharmacology.

[267]  R. Howard,et al.  Disulfiram inhibits the in vitro growth of methicillin-resistant staphylococcus aureus , 1991, Antimicrobial Agents and Chemotherapy.

[268]  J. Eaton,et al.  Hemolytic and microbicidal actions of diethyldithiocarbamic acid. , 1991, Biochemical pharmacology.

[269]  I. Fridovich,et al.  In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli. , 1991, The Journal of biological chemistry.

[270]  M. A. Wuonola,et al.  Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721 , 1987, Antimicrobial Agents and Chemotherapy.

[271]  D. Sigman,et al.  Nuclease activity of 1,10-phenanthroline-copper: sequence-specific targeting. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[272]  K. Kikugawa,et al.  Thiobarbituric acid reaction of aldehydes and oxidized lipids in glacial acetic acid , 1985, Lipids.

[273]  G. Eliopoulos,et al.  In vitro activity and mechanism of action of A21978C1, a novel cyclic lipopeptide antibiotic , 1985, Antimicrobial Agents and Chemotherapy.

[274]  M. D. Faiman,et al.  Elimination kinetics of disulfiram in alcoholics after single and repeated doses , 1984, Clinical pharmacology and therapeutics.

[275]  M. Rabinovitz,et al.  2,9-Dimethyl-1,10-phenanthroline (neocuproine): a potent, copper-dependent cytotoxin with anti-tumor activity. , 1983, Biochemical pharmacology.

[276]  M. Rabinovitz,et al.  Bathocuproine sulphonate: a tissue culture-compatible indicator of copper-mediated toxicity , 1983, Nature.

[277]  G. Gargiulo,et al.  Analogous cleavage of DNA by micrococcal nuclease and a 1-10-phenanthroline-cuprous complex. , 1982, Nucleic acids research.

[278]  H. Timmerman,et al.  Mechanism of action of the copper(I) complex of 2,9-dimethyl-1,10-phenanthroline on Mycoplasma gallisepticum , 1981, Antimicrobial Agents and Chemotherapy.

[279]  D. R. Graham,et al.  Cleavage of deoxyribonucleic acid by the 1,10-phenanthroline-cuprous complex. Hydrogen peroxide requirement and primary and secondary structure specificity. , 1981, Biochemistry.

[280]  H. Verheul,et al.  Mode of action of copper complexes of some 2,2'-bipyridyl analogs on Paracoccus denitrificans , 1980, Antimicrobial Agents and Chemotherapy.

[281]  I. H. Segel,et al.  Mechanism of the Antimicrobial Action of Pyrithione: Effects on Membrane Transport, ATP Levels, and Protein Synthesis , 1978, Antimicrobial Agents and Chemotherapy.

[282]  J. Lutkenhaus Role of a major outer membrane protein in Escherichia coli , 1977, Journal of bacteriology.

[283]  G. Hall,et al.  Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. , 1976, Chemico-biological interactions.

[284]  D. Kidby,et al.  Lipids of yeasts. , 1975, Bacteriological reviews.

[285]  E. Weinberg Nutritional immunity. Host's attempt to withold iron from microbial invaders. , 1975, JAMA.

[286]  W. Finnerty,et al.  Comparative analysis of the lipids of Acinetobacter species grown on hexadecane , 1975, Journal of bacteriology.

[287]  F. P. Dwyer,et al.  The biological actions of 1,10-phenanthroline and 2,2'-bipyridine hydrochlorides, quaternary salts and metal chelates and related compounds. 1. Bacteriostatic action on selected gram-positive, gram-negative and acid-fast bacteria. , 1969, The Australian journal of experimental biology and medical science.

[288]  M. Salton,et al.  FATTY ACID COMPOSITION OF THE LIPIDS OF MEMBRANES OF GRAM-POSITIVE BACTERIA AND "WALLS" OF GRAM-NEGATIVE BACTERIA. , 1964, Biochimica et biophysica acta.

[289]  B. L. Freedlander,et al.  Carcinostatic action of polycarbonyl compounds and their derivatives. IV. Glyoxal bis (thiosemicarbazone) and derivatives. , 1958, Cancer research.

[290]  R. Feeney,et al.  “LIESEGANG-LIKE” RINGS OF GROWTH AND INHIBITION OF BACTERIA IN AGAR CAUSED BY METAL IONS AND CHELATING AGENTS, , 1957, Journal of bacteriology.

[291]  A. Tomlinson,et al.  The influence of chemical constitution on antibacterial activity. VIII. 2-Mercaptopyridine-N-oxide, and some general observations on metalbinding agents. , 1956, British journal of experimental pathology.

[292]  A. Albert,et al.  The Influence of Chemical Constitution on Antibacterial Activity. Part VII: The Site of Action of 8-Hydroxy-Quinoline (Oxine). , 1954 .

[293]  A. Albert,et al.  The influence of chemical constitution on antibacterial activity. VI. The bactericidal action of 8-hydroxyquinoline (oxine). , 1953, British journal of experimental pathology.

[294]  H. Stander,et al.  in vitro Studies with 1-hydroxy-2(1H)pyridinethione , 1953, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[295]  W. H. McCurdy,et al.  2,9-Dimethyl-1,10-phenanthroline , 1952 .

[296]  R. Swaby,et al.  Factors influencing the fungistatic action of 8-hydroxyquinoline (oxine) and its metal complexes. , 1951, Australian journal of scientific research. Ser. B: Biological sciences.

[297]  J. Venulet,et al.  Antitubercular Activity of some 8-Hydroxyquinoline Derivatives , 1951, Nature.

[298]  W. A. Lott,et al.  Analogs of Aspergillic Acid. IV. Substituted 2-Bromopyridine-N-oxides and Their Conversion to Cyclic Thiohydroxamic Acids1 , 1950 .

[299]  A. Albert,et al.  The influence of chemical constitution on antibacterial activity. V. The antibacterial action of 8-hydroxyquinoline (oxine). , 1950, British journal of experimental pathology.

[300]  K. Liebermeister Zum Wirkungsprinzip schwefelhaltiger tuberkulostatischer Chemotherapeutica , 1950 .

[301]  Smith Hw,et al.  Preliminary report on clinical trials of antabuse. , 1949 .

[302]  A. Albert,et al.  The influence of chemical constitution of antibacterial activity; a study of 8-hydroxyquinolin (oxine) and related compounds. , 1947 .

[303]  H. L. Dunn,et al.  Vital statistics rates in the United States 1900-1940 , 1944 .

[304]  S. Waksman,et al.  Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria.∗† , 1944, Clinical orthopaedics and related research.

[305]  R. Gordon,et al.  Treatment of Scabies , 1942, British medical journal.

[306]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[307]  J. Mcelroy THE TREATMENT OF PULMONARY TUBERCULOSIS BY INTRAVENOUS INJECTIONS OF CHINOSOL WITH FORMALDEHYDE. , 1910 .

[308]  O. Geiger,et al.  Bacterial membrane lipids: diversity in structures and pathways. , 2016, FEMS microbiology reviews.

[309]  K. Darwin,et al.  Game of 'Somes: Protein Destruction for Mycobacterium tuberculosis Pathogenesis. , 2016, Trends in microbiology.

[310]  M. Ulanova,et al.  Haemophilus influenzae serotype a as a cause of serious invasive infections. , 2014, The Lancet. Infectious diseases.

[311]  Jeffrey T. Rubino,et al.  A comparison of methionine, histidine and cysteine in copper(I)-binding peptides reveals differences relevant to copper uptake by organisms in diverse environments. , 2011, Metallomics : integrated biometal science.

[312]  Q. Huang,et al.  Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. , 2011, Bioresource technology.

[313]  M. Solioz,et al.  Response of Gram-positive bacteria to copper stress , 2009, JBIC Journal of Biological Inorganic Chemistry.

[314]  H. Kragh FROM DISULFIRAM TO ANTABUSE: THE INVENTION OF A DRUG , 2008 .

[315]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[316]  Tong Liu,et al.  CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. , 2007, Nature chemical biology.

[317]  S. O'Hanlon,et al.  In vitro activity of a novel compound, the metal ion chelating agent AQ+, against clinical isolates of Staphylococcus aureus. , 2006, The Journal of antimicrobial chemotherapy.

[318]  J. W. Whittaker The radical chemistry of galactose oxidase. , 2005, Archives of biochemistry and biophysics.

[319]  G. Rotilio,et al.  Copper-glutathione complexes under physiological conditions: structures in solution different from the solid state coordination , 2004, Biometals.

[320]  M. Jeżowska‐Bojczuk,et al.  Oxidative Activity of Copper(II) Complexes with Aminoglycoside Antibiotics as Implication to the Toxicity of These Drugs , 2004, Bioinorganic chemistry and applications.

[321]  C. Koch,et al.  Mechanism of copper-catalyzed autoxidation of cysteine. , 1999, Free radical research.

[322]  Sagripanti Jl DNA damage mediated by metal ions with special reference to copper and iron. , 1999 .

[323]  M. Solioz,et al.  Copper homeostasis in Enterococcus hirae. , 1999, Advances in experimental medicine and biology.

[324]  A. Papavassiliou 1,10-Phenanthroline-copper ion nuclease footprinting of DNA-protein complexes in situ following mobility-shift electrophoresis assays. , 1994, Methods in molecular biology.

[325]  M. Ernst,et al.  Enhancement of monocyte antimycobacterial activity by diethyldithiocarbamate (DTC). , 1991, International journal of immunopharmacology.

[326]  D. Sigman,et al.  Secondary structure specificity of the nuclease activity of the 1,10-phenanthroline-copper complex. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[327]  J. Sorenson Copper Complexes as the Active Metabolites of Antiinflammatory Agents , 1982 .

[328]  B. Andresen,et al.  The Actions and Metabolic Fate of Disulfiram , 1981 .

[329]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .

[330]  R. Bunge,et al.  The present status of the chemotherapy of tuberculosis with conteben a substance of the thiosemicarbazone series; a review. , 1950, American review of tuberculosis.

[331]  D. Magrath,et al.  The choice of a chelating agent for inactivating trace metals: II. Derivatives of oxine (8-hydroxyquinoline). , 1947, The Biochemical journal.