Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel

In this paper, we consider the numerical approximation of the time fractional diffusion-wave equation in a semi-infinite channel. The time fractional derivative is described in Caputo sense with order γ ? ( 1 < γ < 2 ) . A fully discrete spectral scheme based on a finite difference method in the time direction and a Laguerre-Legendre spectral method in the space direction is proposed. We also propose an alternating direction implicit (ADI) spectral scheme in order to reduce the amount of computation. The stability and convergence of both schemes are rigorously established. Numerical results are presented to support our theoretical analysis.

[1]  Fawang Liu,et al.  Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..

[2]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[3]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[4]  Jan S. Hesthaven,et al.  Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations , 2013, SIAM J. Numer. Anal..

[5]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[6]  T F Nonnenmacher,et al.  A fractional calculus approach to self-similar protein dynamics. , 1995, Biophysical journal.

[7]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[8]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[9]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[10]  Xuan Zhao,et al.  Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..

[11]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[12]  George E. Karniadakis,et al.  Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..

[13]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[14]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[15]  B. Ross,et al.  A BRIEF HISTORY AND EXPOSITION OF THE FUNDAMENTAL THEORY OF FRACTIONAL CALCULUS , 1975 .

[16]  Martin Stynes,et al.  A finite difference method for a two-point boundary value problem with a Caputo fractional derivative , 2013, 1312.5189.

[17]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[18]  Hermann Brunner,et al.  Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain , 2014, J. Comput. Phys..

[19]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[20]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[21]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[22]  Zhi-zhong Sun,et al.  A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions , 2012, J. Comput. Phys..

[23]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[24]  Norbert Heuer,et al.  Numerical Approximation of a Time Dependent, Nonlinear, Space-Fractional Diffusion Equation , 2007, SIAM J. Numer. Anal..

[25]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[26]  Fawang Liu,et al.  Numerical simulation for the three-dimension fractional sub-diffusion equation☆ , 2014 .

[27]  Zhibo Wang,et al.  A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation , 2013, Int. J. Comput. Math..

[28]  Eduardo Cuesta,et al.  Image structure preserving denoising using generalized fractional time integrals , 2012, Signal Process..

[29]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[30]  Limei Li,et al.  Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation , 2013, J. Comput. Phys..

[31]  Guo Ben-yu,et al.  On two-dimensional unsteady incompressible fluid flow in an infinite strip , 2000 .

[32]  I. Podlubny Fractional differential equations , 1998 .

[33]  Jan S. Hesthaven,et al.  A multi-domain spectral method for time-fractional differential equations , 2015, J. Comput. Phys..