Serial Concatenation of RS Codes with Kite Codes: Performance Analysis, Iterative Decoding and Design

In this paper, we propose a new ensemble of rateless forward error correction (FEC) codes. The proposed codes are serially concatenated codes with Reed-Solomon (RS) codes as outer codes and Kite codes as inner codes. The inner Kite codes are a special class of prefix rateless low-density parity-check (PRLDPC) codes, which can generate potentially infinite (or as many as required) random-like parity-check bits. The employment of RS codes as outer codes not only lowers down error-floors but also ensures (with high probability) the correctness of successfully decoded codewords. In addition to the conventional two-stage decoding, iterative decoding between the inner code and the outer code are also implemented to improve the performance further. The performance of the Kite codes under maximum likelihood (ML) decoding is analyzed by applying a refined Divsalar bound to the ensemble weight enumerating functions (WEF). We propose a simulation-based optimization method as well as density evolution (DE) using Gaussian approximations (GA) to design the Kite codes. Numerical results along with semi-analytic bounds show that the proposed codes can approach Shannon limits with extremely low error-floors. It is also shown by simulation that the proposed codes performs well within a wide range of signal-to-noise-ratios (SNRs).

[1]  Xiao Ma,et al.  Semi-random Kite Codes over Fading Channels , 2011, 2011 IEEE International Conference on Advanced Information Networking and Applications.

[2]  Marco Chiani,et al.  Simple reconfigurable low-density parity-check codes , 2005, IEEE Communications Letters.

[3]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[4]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[5]  Murad Hizlan,et al.  Determinate state convolutional codes , 1993, IEEE Trans. Commun..

[6]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[7]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[8]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[9]  Thamer M. Jamel,et al.  CHANNEL CODING , 2018, Digital Communication For Practicing Engineers.

[10]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[11]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[12]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[13]  Omid Etesami,et al.  Raptor codes on binary memoryless symmetric channels , 2006, IEEE Transactions on Information Theory.

[14]  G.D. Forney,et al.  Codes on graphs: Normal realizations , 2000, IEEE Trans. Inf. Theory.

[15]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[16]  ITU-T Rec. G.975.1 (02/2004) Forward error correction for high bit-rate DWDM submarine systems , 2005 .

[17]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[18]  Erik Paaske Improved decoding for a concatenated coding system recommended by CCSDS , 1990, IEEE Trans. Commun..

[19]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[20]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  Jonathan S. Yedidia,et al.  Rateless codes on noisy channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[23]  Yu-Chi Ho,et al.  An Explanation of Ordinal Optimization: Soft Computing for hard Problems , 1999, Inf. Sci..

[24]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[25]  Marco Chiani,et al.  Channel Coding for Future Space Missions: New Requirements and Trends , 2007, Proceedings of the IEEE.

[26]  Sergio Benedetto,et al.  Algorithm for continuous decoding of turbo codes , 1996 .

[27]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[28]  Steven W. McLaughlin,et al.  Applications of ErrorControl Coding , 2000 .

[29]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[30]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[31]  Isaac Sofair Probability of miscorrection for Reed-Solomon codes , 2000, Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540).

[32]  Wei Zhong,et al.  Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix , 2003, IEEE Communications Letters.

[33]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[34]  D. Divsalar A Simple Tight Bound on Error Probability of Block Codes with Application to Turbo Codes , 1999 .

[35]  Xiaojun Yuan,et al.  Simple capacity-achieving ensembles of rateless erasure-correcting codes , 2010, IEEE Transactions on Communications.

[36]  Payam Pakzad,et al.  Design Principles for Raptor Codes , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[37]  Shlomo Shamai,et al.  Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial , 2006, Found. Trends Commun. Inf. Theory.

[38]  Stephen B. Wicker,et al.  Applications of Error-Control Coding , 1998, IEEE Trans. Inf. Theory.

[39]  Dariush Divsalar,et al.  Upper bounds to error probabilities of coded systems beyond the cutoff rate , 2003, IEEE Trans. Commun..

[40]  Robert J. McEliece,et al.  On the decoder error probability for Reed-Solomon codes , 1986, IEEE Trans. Inf. Theory.

[41]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[42]  Xiao Ma,et al.  Maximum likelihood decoding analysis of LT codes over AWGN channels , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[43]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[44]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[45]  Shlomo Shamai,et al.  Fountain Capacity , 2006, IEEE Transactions on Information Theory.

[46]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[47]  Joong Bum Rhim,et al.  Fountain Codes , 2010 .