The Aerosol Limb Imager: acousto-optic imaging of limb-scattered sunlight for stratospheric aerosol profiling

Abstract. The Aerosol Limb Imager (ALI) is an optical remote sensing instrument designed to image scattered sunlight from the atmospheric limb. These measurements are used to retrieve spatially resolved information of the stratospheric aerosol distribution, including spectral extinction coefficient and particle size. Here we present the design, development and test results of an ALI prototype instrument. The long-term goal of this work is the eventual realization of ALI on a satellite platform in low earth orbit, where it can provide high spatial resolution observations, both in the vertical and cross-track. The instrument design uses a large-aperture acousto-optic tunable filter (AOTF) to image the sunlit stratospheric limb in a selectable narrow wavelength band ranging from the visible to the near infrared. The ALI prototype was tested on a stratospheric balloon flight from the Canadian Space Agency (CSA) launch facility in Timmins, Canada, in September 2014. Preliminary analysis of the hyperspectral images indicates that the radiance measurements are of high quality, and we have used these to retrieve vertical profiles of stratospheric aerosol extinction coefficient from 650 to 1000 nm, along with one moment of the particle size distribution. Those preliminary results are promising and development of a satellite prototype of ALI within the Canadian Space Agency is ongoing.

[1]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[2]  Robert J. Charlson,et al.  Monitoring of Atmospheric Aerosol Parameters with the Integrating Nephelometer , 1969 .

[3]  A. W. Brewer,et al.  Instruments for the Measurement of the Visual Range , 1949 .

[4]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[5]  David M. Winker,et al.  Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar , 2010 .

[6]  Larry W. Thomason,et al.  Improved stratospheric aerosol extinction profiles from SCIAMACHY: validation and sample results , 2015 .

[7]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[8]  P. Bernath,et al.  Aerosol extinction profiles at 525 nm and 1020 nm derived from ACE imager data: comparisons with GOMOS, SAGE II, SAGE III, POAM III, and OSIRIS , 2008 .

[9]  T. Deshler,et al.  On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements , 2015 .

[10]  Makiko Sato,et al.  Total volcanic stratospheric aerosol optical depths and implications for global climate change , 2014 .

[11]  P. Bernath,et al.  Atmospheric Chemistry Experiment (ACE) observations of aerosol in the upper troposphere and lower stratosphere from the Kasatochi volcanic eruption , 2010 .

[12]  A. Bourassa,et al.  Stratospheric aerosol retrieval with optical spectrograph and infrared imaging system limb scatter measurements , 2007 .

[13]  J. Liley,et al.  Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon‐borne instruments , 2003 .

[14]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[15]  P. Bernath,et al.  The onboard imagers for the Canadian ACE SCISAT‐1 mission , 2007 .

[16]  Didier Fussen,et al.  Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain. , 2012, Applied optics.

[17]  William P. Chu,et al.  Stratospheric Aerosol and Gas Experiment III , 1998, Remote Sensing.

[18]  Adam E. Bourassa,et al.  SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight , 2008 .

[19]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[20]  M. McCormick,et al.  SAGE II aerosol data validation and initial data use: An introduction and overview , 1989 .

[21]  D. Wardle,et al.  The ACE-MAESTRO instrument on SCISAT: description, performance, and preliminary results. , 2007, Applied optics.

[22]  Neelam Gupta,et al.  Telecentric confocal optics for aberration correction of acousto-optic tunable filters. , 2004, Applied optics.

[23]  Joseph Gasbarre,et al.  The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission , 2014, SPIE Remote Sensing.

[24]  M. Kosch,et al.  Absolute optical calibration using a simple tungsten light bulb: Experiment , 2003 .

[25]  H. Bovensmann,et al.  Global stratospheric aerosol extinction profile retrievals from SCIAMACHY limb-scatter observations , 2012 .

[26]  V. Voloshinov,et al.  Wide-aperture acousto-optic interaction in birefringent crystals , 2006 .

[27]  Vitaly B. Voloshinov,et al.  Spectral and polarization analysis of optical images by means of acousto-optics , 1996 .

[28]  J. Kar,et al.  CALIPSO detection of an Asian tropopause aerosol layer , 2011 .

[29]  Robert Damadeo,et al.  SAGE version 7.0 algorithm: application to SAGE II , 2013 .

[30]  K. Froyd,et al.  Observations of the chemical composition of stratospheric aerosol particles , 2014 .

[31]  H. L. Miller,et al.  The contribution of anthropogenic SO2 emissions to the Asian tropopause aerosol layer , 2014 .

[32]  Naoya Uchida,et al.  Optical Properties of Single-Crystal Paratellurite (TeO2) , 1971 .

[33]  Michael Fromm,et al.  Comment on "Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport" , 2013, Science.

[34]  L. Thomason,et al.  Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005 , 2012 .

[35]  Vitaly B. Voloshinov,et al.  Improvement in performance of a TeO 2 acousto-optic imaging spectrometer , 2007 .

[36]  J. Kiehl,et al.  The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing , 1993, Science.

[37]  Robert F Fischer,et al.  Optical System Design , 2000 .

[38]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[39]  D. Degenstein,et al.  High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model , 2015 .

[40]  Terry Deshler,et al.  Response to Comments on "Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport" , 2013, Science.

[41]  J. Pelon,et al.  Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post‐volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo , 1995 .

[42]  L. Mona,et al.  Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere , 2012 .

[43]  Jianli Xu,et al.  Book-Review - Acousto-Optic Devices - Principles Design and Applications , 1992 .

[44]  J. E. Manson,et al.  A World-wide Stratospheric Aerosol Layer , 1961, Science.

[45]  D. Degenstein,et al.  Merging the OSIRIS and SAGE II stratospheric aerosol records , 2015 .

[46]  Robert Loughman,et al.  SCIAMACHY stratospheric aerosol extinction profile retrieval using the OMPS/LP algorithm , 2011 .

[47]  Francis W. Zwiers,et al.  Overestimated global warming over the past 20 years , 2013 .

[48]  D. Degenstein,et al.  Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison , 2011 .

[49]  Adam E. Bourassa,et al.  Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport , 2012, Science.

[50]  D. Degenstein,et al.  Stratospheric aerosol particle size information in Odin-OSIRIS limb scatter spectra , 2013 .

[51]  H. Jäger,et al.  Trends in the nonvolcanic component of stratospheric aerosol over the period 1971–2004 , 2006 .

[52]  C. McLinden,et al.  Precision estimate for Odin‐OSIRIS limb scatter retrievals , 2012 .

[53]  Floyd Hovis,et al.  Space-based, multi-wavelength solid-state lasers for NASA's Cloud Aerosol Transport System for International Space Station (CATS-ISS) , 2013, Photonics West - Lasers and Applications in Science and Engineering.

[54]  E. J. Llewellyn,et al.  The OSIRIS instrument on the Odin spacecraft , 2004 .

[55]  R. Neely,et al.  The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change , 2011, Science.

[56]  Didier Rault,et al.  The OMPS Limb Profiler Environmental Data Record Algorithm Theoretical Basis Document and Expected Performance , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Kristopher M. Bedka,et al.  Dispersion of the Nabro volcanic plume and its relation to the Asian summer monsoon , 2013 .

[58]  L. Thomason,et al.  SAGE III aerosol extinction measurements: Initial results , 2003 .

[59]  James R. Campbell,et al.  Correcting the record of volcanic stratospheric aerosol impact: Nabro and Sarychev Peak , 2014 .

[60]  J. Vernier,et al.  Significant radiative impact of volcanic aerosol in the lowermost stratosphere , 2015, Nature Communications.

[61]  J. Pommereau,et al.  Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade , 2011 .

[62]  J. Haywood,et al.  The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2‐ES climate model , 2014 .

[63]  John E. Barnes,et al.  Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado , 2009 .

[64]  C. Clerbaux,et al.  The 2011 Nabro eruption, a SO 2 plume height analysis using IASI measurements , 2013 .

[65]  G. Georgiev,et al.  Spectral characterization of acousto-optic filters used in imaging spectroscopy. , 2002, Applied optics.